import torch import torch.nn as nn __all__ = ['OPS', 'ReLUConvBN', 'SearchSpaceNames'] OPS = { 'none' : lambda C_in, C_out, stride: Zero(C_in, C_out, stride), 'avg_pool_3x3' : lambda C_in, C_out, stride: POOLING(C_in, C_out, stride, 'avg'), 'max_pool_3x3' : lambda C_in, C_out, stride: POOLING(C_in, C_out, stride, 'max'), 'nor_conv_7x7' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1)), 'nor_conv_3x3' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1)), 'nor_conv_1x1' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1)), 'skip_connect' : lambda C_in, C_out, stride: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride), } CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3'] SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK} class POOLING(nn.Module): def __init__(self, C_in, C_out, stride, mode): super(POOLING, self).__init__() if C_in == C_out: self.preprocess = None else: self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0) if mode == 'avg' : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1) else : raise ValueError('Invalid mode={:} in POOLING'.format(mode)) def forward(self, inputs): if self.preprocess: x = self.preprocess(inputs) else : x = inputs return self.op(x) class ReLUConvBN(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation): super(ReLUConvBN, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), nn.BatchNorm2d(C_out) ) def forward(self, x): return self.op(x) class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class Zero(nn.Module): def __init__(self, C_in, C_out, stride): super(Zero, self).__init__() self.C_in = C_in self.C_out = C_out self.stride = stride self.is_zero = True def forward(self, x): if self.C_in == self.C_out: if self.stride == 1: return x.mul(0.) else : return x[:,:,::self.stride,::self.stride].mul(0.) else: shape = list(x.shape) shape[1] = self.C_out zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device) return zeros def extra_repr(self): return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__) class FactorizedReduce(nn.Module): def __init__(self, C_in, C_out, stride): super(FactorizedReduce, self).__init__() self.stride = stride self.C_in = C_in self.C_out = C_out self.relu = nn.ReLU(inplace=False) if stride == 2: #assert C_out % 2 == 0, 'C_out : {:}'.format(C_out) C_outs = [C_out // 2, C_out - C_out // 2] self.convs = nn.ModuleList() for i in range(2): self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) ) self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) else: raise ValueError('Invalid stride : {:}'.format(stride)) self.bn = nn.BatchNorm2d(C_out) def forward(self, x): x = self.relu(x) y = self.pad(x) out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1) out = self.bn(out) return out def extra_repr(self): return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)