import torch
import torch.nn as nn


class ImageNetHEAD(nn.Sequential):
  def __init__(self, C, stride=2):
    super(ImageNetHEAD, self).__init__()
    self.add_module('conv1', nn.Conv2d(3, C // 2, kernel_size=3, stride=2, padding=1, bias=False))
    self.add_module('bn1'  , nn.BatchNorm2d(C // 2))
    self.add_module('relu1', nn.ReLU(inplace=True))
    self.add_module('conv2', nn.Conv2d(C // 2, C, kernel_size=3, stride=stride, padding=1, bias=False))
    self.add_module('bn2'  , nn.BatchNorm2d(C))


class CifarHEAD(nn.Sequential):
  def __init__(self, C):
    super(CifarHEAD, self).__init__()
    self.add_module('conv', nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False))
    self.add_module('bn', nn.BatchNorm2d(C))


class AuxiliaryHeadCIFAR(nn.Module):

  def __init__(self, C, num_classes):
    """assuming input size 8x8"""
    super(AuxiliaryHeadCIFAR, self).__init__()
    self.features = nn.Sequential(
      nn.ReLU(inplace=True),
      nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
      nn.Conv2d(C, 128, 1, bias=False),
      nn.BatchNorm2d(128),
      nn.ReLU(inplace=True),
      nn.Conv2d(128, 768, 2, bias=False),
      nn.BatchNorm2d(768),
      nn.ReLU(inplace=True)
    )
    self.classifier = nn.Linear(768, num_classes)

  def forward(self, x):
    x = self.features(x)
    x = self.classifier(x.view(x.size(0),-1))
    return x


class AuxiliaryHeadImageNet(nn.Module):

  def __init__(self, C, num_classes):
    """assuming input size 14x14"""
    super(AuxiliaryHeadImageNet, self).__init__()
    self.features = nn.Sequential(
      nn.ReLU(inplace=True),
      nn.AvgPool2d(5, stride=2, padding=0, count_include_pad=False),
      nn.Conv2d(C, 128, 1, bias=False),
      nn.BatchNorm2d(128),
      nn.ReLU(inplace=True),
      nn.Conv2d(128, 768, 2, bias=False),
      nn.BatchNorm2d(768),
      nn.ReLU(inplace=True)
    )
    self.classifier = nn.Linear(768, num_classes)

  def forward(self, x):
    x = self.features(x)
    x = self.classifier(x.view(x.size(0),-1))
    return x