################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # ################################################## # python exps/NAS-Bench-102/visualize.py --api_path $HOME/.torch/NAS-Bench-102-v1_0-e61699.pth ################################################## import os, sys, time, argparse, collections from tqdm import tqdm import numpy as np import torch import torch.nn as nn from pathlib import Path from collections import defaultdict import matplotlib import seaborn as sns from mpl_toolkits.mplot3d import Axes3D matplotlib.use('agg') import matplotlib.pyplot as plt lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from log_utils import time_string from nas_102_api import NASBench102API as API def calculate_correlation(*vectors): matrix = [] for i, vectori in enumerate(vectors): x = [] for j, vectorj in enumerate(vectors): x.append( np.corrcoef(vectori, vectorj)[0,1] ) matrix.append( x ) return np.array(matrix) def visualize_relative_ranking(vis_save_dir): print ('\n' + '-'*100) cifar010_cache_path = vis_save_dir / '{:}-cache-info.pth'.format('cifar10') cifar100_cache_path = vis_save_dir / '{:}-cache-info.pth'.format('cifar100') imagenet_cache_path = vis_save_dir / '{:}-cache-info.pth'.format('ImageNet16-120') cifar010_info = torch.load(cifar010_cache_path) cifar100_info = torch.load(cifar100_cache_path) imagenet_info = torch.load(imagenet_cache_path) indexes = list(range(len(cifar010_info['params']))) print ('{:} start to visualize relative ranking'.format(time_string())) # maximum accuracy with ResNet-level params 11472 x_010_accs = [ cifar010_info['test_accs'][i] if cifar010_info['params'][i] <= cifar010_info['params'][11472] else -1 for i in indexes] x_100_accs = [ cifar100_info['test_accs'][i] if cifar100_info['params'][i] <= cifar100_info['params'][11472] else -1 for i in indexes] x_img_accs = [ imagenet_info['test_accs'][i] if imagenet_info['params'][i] <= imagenet_info['params'][11472] else -1 for i in indexes] cifar010_ord_indexes = sorted(indexes, key=lambda i: cifar010_info['test_accs'][i]) cifar100_ord_indexes = sorted(indexes, key=lambda i: cifar100_info['test_accs'][i]) imagenet_ord_indexes = sorted(indexes, key=lambda i: imagenet_info['test_accs'][i]) cifar100_labels, imagenet_labels = [], [] for idx in cifar010_ord_indexes: cifar100_labels.append( cifar100_ord_indexes.index(idx) ) imagenet_labels.append( imagenet_ord_indexes.index(idx) ) print ('{:} prepare data done.'.format(time_string())) dpi, width, height = 300, 2600, 2600 figsize = width / float(dpi), height / float(dpi) LabelSize, LegendFontsize = 18, 18 resnet_scale, resnet_alpha = 120, 0.5 fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) plt.xlim(min(indexes), max(indexes)) plt.ylim(min(indexes), max(indexes)) #plt.ylabel('y').set_rotation(0) plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//6), fontsize=LegendFontsize, rotation='vertical') plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//6), fontsize=LegendFontsize) #ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8, label='CIFAR-100') #ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red' , alpha=0.8, label='ImageNet-16-120') #ax.scatter(indexes, indexes , marker='o', s=0.5, c='tab:blue' , alpha=0.8, label='CIFAR-10') ax.scatter(indexes, cifar100_labels, marker='^', s=0.5, c='tab:green', alpha=0.8) ax.scatter(indexes, imagenet_labels, marker='*', s=0.5, c='tab:red' , alpha=0.8) ax.scatter(indexes, indexes , marker='o', s=0.5, c='tab:blue' , alpha=0.8) ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='CIFAR-10') ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='CIFAR-100') ax.scatter([-1], [-1], marker='*', s=100, c='tab:red' , label='ImageNet-16-120') plt.grid(zorder=0) ax.set_axisbelow(True) plt.legend(loc=0, fontsize=LegendFontsize) ax.set_xlabel('architecture ranking in CIFAR-10', fontsize=LabelSize) ax.set_ylabel('architecture ranking', fontsize=LabelSize) save_path = (vis_save_dir / 'relative-rank.pdf').resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') save_path = (vis_save_dir / 'relative-rank.png').resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') print ('{:} save into {:}'.format(time_string(), save_path)) # calculate correlation sns_size = 15 CoRelMatrix = calculate_correlation(cifar010_info['valid_accs'], cifar010_info['test_accs'], cifar100_info['valid_accs'], cifar100_info['test_accs'], imagenet_info['valid_accs'], imagenet_info['test_accs']) fig = plt.figure(figsize=figsize) plt.axis('off') h = sns.heatmap(CoRelMatrix, annot=True, annot_kws={'size':sns_size}, fmt='.3f', linewidths=0.5) save_path = (vis_save_dir / 'co-relation-all.pdf').resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') print ('{:} save into {:}'.format(time_string(), save_path)) # calculate correlation acc_bars = [92, 93] for acc_bar in acc_bars: selected_indexes = [] for i, acc in enumerate(cifar010_info['test_accs']): if acc > acc_bar: selected_indexes.append( i ) print ('select {:} architectures'.format(len(selected_indexes))) cifar010_valid_accs = np.array(cifar010_info['valid_accs'])[ selected_indexes ] cifar010_test_accs = np.array(cifar010_info['test_accs']) [ selected_indexes ] cifar100_valid_accs = np.array(cifar100_info['valid_accs'])[ selected_indexes ] cifar100_test_accs = np.array(cifar100_info['test_accs']) [ selected_indexes ] imagenet_valid_accs = np.array(imagenet_info['valid_accs'])[ selected_indexes ] imagenet_test_accs = np.array(imagenet_info['test_accs']) [ selected_indexes ] CoRelMatrix = calculate_correlation(cifar010_valid_accs, cifar010_test_accs, cifar100_valid_accs, cifar100_test_accs, imagenet_valid_accs, imagenet_test_accs) fig = plt.figure(figsize=figsize) plt.axis('off') h = sns.heatmap(CoRelMatrix, annot=True, annot_kws={'size':sns_size}, fmt='.3f', linewidths=0.5) save_path = (vis_save_dir / 'co-relation-top-{:}.pdf'.format(len(selected_indexes))).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') print ('{:} save into {:}'.format(time_string(), save_path)) plt.close('all') def visualize_info(meta_file, dataset, vis_save_dir): print ('{:} start to visualize {:} information'.format(time_string(), dataset)) cache_file_path = vis_save_dir / '{:}-cache-info.pth'.format(dataset) if not cache_file_path.exists(): print ('Do not find cache file : {:}'.format(cache_file_path)) nas_bench = API(str(meta_file)) params, flops, train_accs, valid_accs, test_accs, otest_accs = [], [], [], [], [], [] for index in range( len(nas_bench) ): info = nas_bench.query_by_index(index, use_12epochs_result=False) resx = info.get_comput_costs(dataset) ; flop, param = resx['flops'], resx['params'] if dataset == 'cifar10': res = info.get_metrics('cifar10', 'train') ; train_acc = res['accuracy'] res = info.get_metrics('cifar10-valid', 'x-valid') ; valid_acc = res['accuracy'] res = info.get_metrics('cifar10', 'ori-test') ; test_acc = res['accuracy'] res = info.get_metrics('cifar10', 'ori-test') ; otest_acc = res['accuracy'] else: res = info.get_metrics(dataset, 'train') ; train_acc = res['accuracy'] res = info.get_metrics(dataset, 'x-valid') ; valid_acc = res['accuracy'] res = info.get_metrics(dataset, 'x-test') ; test_acc = res['accuracy'] res = info.get_metrics(dataset, 'ori-test') ; otest_acc = res['accuracy'] if index == 11472: # resnet resnet = {'params':param, 'flops': flop, 'index': 11472, 'train_acc': train_acc, 'valid_acc': valid_acc, 'test_acc': test_acc, 'otest_acc': otest_acc} flops.append( flop ) params.append( param ) train_accs.append( train_acc ) valid_accs.append( valid_acc ) test_accs.append( test_acc ) otest_accs.append( otest_acc ) #resnet = {'params': 0.559, 'flops': 78.56, 'index': 11472, 'train_acc': 99.99, 'valid_acc': 90.84, 'test_acc': 93.97} info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs, 'otest_accs': otest_accs} info['resnet'] = resnet torch.save(info, cache_file_path) else: print ('Find cache file : {:}'.format(cache_file_path)) info = torch.load(cache_file_path) params, flops, train_accs, valid_accs, test_accs, otest_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs'], info['otest_accs'] resnet = info['resnet'] print ('{:} collect data done.'.format(time_string())) indexes = list(range(len(params))) dpi, width, height = 300, 2600, 2600 figsize = width / float(dpi), height / float(dpi) LabelSize, LegendFontsize = 22, 22 resnet_scale, resnet_alpha = 120, 0.5 fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) plt.xticks(np.arange(0, 1.6, 0.3), fontsize=LegendFontsize) if dataset == 'cifar10': plt.ylim(50, 100) plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) elif dataset == 'cifar100': plt.ylim(25, 75) plt.yticks(np.arange(25, 76, 10), fontsize=LegendFontsize) else: plt.ylim(0, 50) plt.yticks(np.arange(0, 51, 10), fontsize=LegendFontsize) ax.scatter(params, valid_accs, marker='o', s=0.5, c='tab:blue') ax.scatter([resnet['params']], [resnet['valid_acc']], marker='*', s=resnet_scale, c='tab:orange', label='resnet', alpha=0.4) plt.grid(zorder=0) ax.set_axisbelow(True) plt.legend(loc=4, fontsize=LegendFontsize) ax.set_xlabel('#parameters (MB)', fontsize=LabelSize) ax.set_ylabel('the validation accuracy (%)', fontsize=LabelSize) save_path = (vis_save_dir / '{:}-param-vs-valid.pdf'.format(dataset)).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') save_path = (vis_save_dir / '{:}-param-vs-valid.png'.format(dataset)).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') print ('{:} save into {:}'.format(time_string(), save_path)) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) plt.xticks(np.arange(0, 1.6, 0.3), fontsize=LegendFontsize) if dataset == 'cifar10': plt.ylim(50, 100) plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) elif dataset == 'cifar100': plt.ylim(25, 75) plt.yticks(np.arange(25, 76, 10), fontsize=LegendFontsize) else: plt.ylim(0, 50) plt.yticks(np.arange(0, 51, 10), fontsize=LegendFontsize) ax.scatter(params, test_accs, marker='o', s=0.5, c='tab:blue') ax.scatter([resnet['params']], [resnet['test_acc']], marker='*', s=resnet_scale, c='tab:orange', label='resnet', alpha=resnet_alpha) plt.grid() ax.set_axisbelow(True) plt.legend(loc=4, fontsize=LegendFontsize) ax.set_xlabel('#parameters (MB)', fontsize=LabelSize) ax.set_ylabel('the test accuracy (%)', fontsize=LabelSize) save_path = (vis_save_dir / '{:}-param-vs-test.pdf'.format(dataset)).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') save_path = (vis_save_dir / '{:}-param-vs-test.png'.format(dataset)).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') print ('{:} save into {:}'.format(time_string(), save_path)) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) plt.xticks(np.arange(0, 1.6, 0.3), fontsize=LegendFontsize) if dataset == 'cifar10': plt.ylim(50, 100) plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) elif dataset == 'cifar100': plt.ylim(20, 100) plt.yticks(np.arange(20, 101, 10), fontsize=LegendFontsize) else: plt.ylim(25, 76) plt.yticks(np.arange(25, 76, 10), fontsize=LegendFontsize) ax.scatter(params, train_accs, marker='o', s=0.5, c='tab:blue') ax.scatter([resnet['params']], [resnet['train_acc']], marker='*', s=resnet_scale, c='tab:orange', label='resnet', alpha=resnet_alpha) plt.grid() ax.set_axisbelow(True) plt.legend(loc=4, fontsize=LegendFontsize) ax.set_xlabel('#parameters (MB)', fontsize=LabelSize) ax.set_ylabel('the trarining accuracy (%)', fontsize=LabelSize) save_path = (vis_save_dir / '{:}-param-vs-train.pdf'.format(dataset)).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') save_path = (vis_save_dir / '{:}-param-vs-train.png'.format(dataset)).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') print ('{:} save into {:}'.format(time_string(), save_path)) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) plt.xlim(0, max(indexes)) plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//5), fontsize=LegendFontsize) if dataset == 'cifar10': plt.ylim(50, 100) plt.yticks(np.arange(50, 101, 10), fontsize=LegendFontsize) elif dataset == 'cifar100': plt.ylim(25, 75) plt.yticks(np.arange(25, 76, 10), fontsize=LegendFontsize) else: plt.ylim(0, 50) plt.yticks(np.arange(0, 51, 10), fontsize=LegendFontsize) ax.scatter(indexes, test_accs, marker='o', s=0.5, c='tab:blue') ax.scatter([resnet['index']], [resnet['test_acc']], marker='*', s=resnet_scale, c='tab:orange', label='resnet', alpha=resnet_alpha) plt.grid() ax.set_axisbelow(True) plt.legend(loc=4, fontsize=LegendFontsize) ax.set_xlabel('architecture ID', fontsize=LabelSize) ax.set_ylabel('the test accuracy (%)', fontsize=LabelSize) save_path = (vis_save_dir / '{:}-test-over-ID.pdf'.format(dataset)).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') save_path = (vis_save_dir / '{:}-test-over-ID.png'.format(dataset)).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') print ('{:} save into {:}'.format(time_string(), save_path)) plt.close('all') def visualize_rank_over_time(meta_file, vis_save_dir): print ('\n' + '-'*150) vis_save_dir.mkdir(parents=True, exist_ok=True) print ('{:} start to visualize rank-over-time into {:}'.format(time_string(), vis_save_dir)) cache_file_path = vis_save_dir / 'rank-over-time-cache-info.pth' if not cache_file_path.exists(): print ('Do not find cache file : {:}'.format(cache_file_path)) nas_bench = API(str(meta_file)) print ('{:} load nas_bench done'.format(time_string())) params, flops, train_accs, valid_accs, test_accs, otest_accs = [], [], defaultdict(list), defaultdict(list), defaultdict(list), defaultdict(list) #for iepoch in range(200): for index in range( len(nas_bench) ): for index in tqdm(range(len(nas_bench))): info = nas_bench.query_by_index(index, use_12epochs_result=False) for iepoch in range(200): res = info.get_metrics('cifar10' , 'train' , iepoch) ; train_acc = res['accuracy'] res = info.get_metrics('cifar10-valid', 'x-valid' , iepoch) ; valid_acc = res['accuracy'] res = info.get_metrics('cifar10' , 'ori-test', iepoch) ; test_acc = res['accuracy'] res = info.get_metrics('cifar10' , 'ori-test', iepoch) ; otest_acc = res['accuracy'] train_accs[iepoch].append( train_acc ) valid_accs[iepoch].append( valid_acc ) test_accs [iepoch].append( test_acc ) otest_accs[iepoch].append( otest_acc ) if iepoch == 0: res = info.get_comput_costs('cifar10') ; flop, param = res['flops'], res['params'] flops.append( flop ) params.append( param ) info = {'params': params, 'flops': flops, 'train_accs': train_accs, 'valid_accs': valid_accs, 'test_accs': test_accs, 'otest_accs': otest_accs} torch.save(info, cache_file_path) else: print ('Find cache file : {:}'.format(cache_file_path)) info = torch.load(cache_file_path) params, flops, train_accs, valid_accs, test_accs, otest_accs = info['params'], info['flops'], info['train_accs'], info['valid_accs'], info['test_accs'], info['otest_accs'] print ('{:} collect data done.'.format(time_string())) #selected_epochs = [0, 100, 150, 180, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199] selected_epochs = list( range(200) ) x_xtests = test_accs[199] indexes = list(range(len(x_xtests))) ord_idxs = sorted(indexes, key=lambda i: x_xtests[i]) for sepoch in selected_epochs: x_valids = valid_accs[sepoch] valid_ord_idxs = sorted(indexes, key=lambda i: x_valids[i]) valid_ord_lbls = [] for idx in ord_idxs: valid_ord_lbls.append( valid_ord_idxs.index(idx) ) # labeled data dpi, width, height = 300, 2600, 2600 figsize = width / float(dpi), height / float(dpi) LabelSize, LegendFontsize = 18, 18 fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) plt.xlim(min(indexes), max(indexes)) plt.ylim(min(indexes), max(indexes)) plt.yticks(np.arange(min(indexes), max(indexes), max(indexes)//6), fontsize=LegendFontsize, rotation='vertical') plt.xticks(np.arange(min(indexes), max(indexes), max(indexes)//6), fontsize=LegendFontsize) ax.scatter(indexes, valid_ord_lbls, marker='^', s=0.5, c='tab:green', alpha=0.8) ax.scatter(indexes, indexes , marker='o', s=0.5, c='tab:blue' , alpha=0.8) ax.scatter([-1], [-1], marker='^', s=100, c='tab:green', label='CIFAR-10 validation') ax.scatter([-1], [-1], marker='o', s=100, c='tab:blue' , label='CIFAR-10 test') plt.grid(zorder=0) ax.set_axisbelow(True) plt.legend(loc='upper left', fontsize=LegendFontsize) ax.set_xlabel('architecture ranking in the final test accuracy', fontsize=LabelSize) ax.set_ylabel('architecture ranking in the validation set', fontsize=LabelSize) save_path = (vis_save_dir / 'time-{:03d}.pdf'.format(sepoch)).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='pdf') save_path = (vis_save_dir / 'time-{:03d}.png'.format(sepoch)).resolve() fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png') print ('{:} save into {:}'.format(time_string(), save_path)) plt.close('all') def write_video(save_dir): import cv2 video_save_path = save_dir / 'time.avi' print ('{:} start create video for {:}'.format(time_string(), video_save_path)) images = sorted( list( save_dir.glob('time-*.png') ) ) ximage = cv2.imread(str(images[0])) #shape = (ximage.shape[1], ximage.shape[0]) shape = (1000, 1000) #writer = cv2.VideoWriter(str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 25, shape) writer = cv2.VideoWriter(str(video_save_path), cv2.VideoWriter_fourcc(*"MJPG"), 5, shape) for idx, image in enumerate(images): ximage = cv2.imread(str(image)) _image = cv2.resize(ximage, shape) writer.write(_image) writer.release() print ('write video [{:} frames] into {:}'.format(len(images), video_save_path)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--save_dir', type=str, default='./output/search-cell-nas-bench-102/visual', help='The base-name of folder to save checkpoints and log.') parser.add_argument('--api_path', type=str, default=None, help='The path to the NAS-Bench-102 benchmark file.') args = parser.parse_args() vis_save_dir = Path(args.save_dir) / 'visuals' vis_save_dir.mkdir(parents=True, exist_ok=True) meta_file = Path(args.api_path) assert meta_file.exists(), 'invalid path for api : {:}'.format(meta_file) visualize_rank_over_time(str(meta_file), vis_save_dir / 'over-time') write_video(vis_save_dir / 'over-time') visualize_info(str(meta_file), 'cifar10' , vis_save_dir) visualize_info(str(meta_file), 'cifar100', vis_save_dir) visualize_info(str(meta_file), 'ImageNet16-120', vis_save_dir) visualize_relative_ranking(vis_save_dir)