455 lines
16 KiB
Python
Executable File
455 lines
16 KiB
Python
Executable File
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 #
|
|
##################################################
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import math
|
|
from collections import OrderedDict
|
|
import numpy as np
|
|
import pandas as pd
|
|
import copy
|
|
from functools import partial
|
|
from typing import Optional, Text
|
|
import logging
|
|
|
|
from qlib.utils import (
|
|
unpack_archive_with_buffer,
|
|
save_multiple_parts_file,
|
|
get_or_create_path,
|
|
drop_nan_by_y_index,
|
|
)
|
|
from qlib.log import get_module_logger, TimeInspector
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
import torch.utils.data as th_data
|
|
|
|
import layers as xlayers
|
|
from log_utils import AverageMeter
|
|
from utils import count_parameters
|
|
|
|
from qlib.model.base import Model
|
|
from qlib.data.dataset import DatasetH
|
|
from qlib.data.dataset.handler import DataHandlerLP
|
|
|
|
|
|
default_net_config = dict(d_feat=6, hidden_size=48, depth=5, pos_drop=0.1)
|
|
|
|
default_opt_config = dict(
|
|
epochs=200, lr=0.001, batch_size=2000, early_stop=20, loss="mse", optimizer="adam", num_workers=4
|
|
)
|
|
|
|
|
|
class QuantTransformer(Model):
|
|
"""Transformer-based Quant Model"""
|
|
|
|
def __init__(self, net_config=None, opt_config=None, metric="", GPU=0, seed=None, **kwargs):
|
|
# Set logger.
|
|
self.logger = get_module_logger("QuantTransformer")
|
|
self.logger.info("QuantTransformer pytorch version...")
|
|
|
|
# set hyper-parameters.
|
|
self.net_config = net_config or default_net_config
|
|
self.opt_config = opt_config or default_opt_config
|
|
self.metric = metric
|
|
self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu")
|
|
self.seed = seed
|
|
|
|
self.logger.info(
|
|
"Transformer parameters setting:"
|
|
"\nnet_config : {:}"
|
|
"\nopt_config : {:}"
|
|
"\nmetric : {:}"
|
|
"\ndevice : {:}"
|
|
"\nseed : {:}".format(
|
|
self.net_config,
|
|
self.opt_config,
|
|
self.metric,
|
|
self.device,
|
|
self.seed,
|
|
)
|
|
)
|
|
|
|
if self.seed is not None:
|
|
np.random.seed(self.seed)
|
|
torch.manual_seed(self.seed)
|
|
|
|
self.model = TransformerModel(
|
|
d_feat=self.net_config["d_feat"],
|
|
embed_dim=self.net_config["hidden_size"],
|
|
depth=self.net_config["depth"],
|
|
pos_drop=self.net_config["pos_drop"],
|
|
)
|
|
self.logger.info("model: {:}".format(self.model))
|
|
self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model)))
|
|
|
|
if self.opt_config["optimizer"] == "adam":
|
|
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.opt_config["lr"])
|
|
elif self.opt_config["optimizer"] == "adam":
|
|
self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.opt_config["lr"])
|
|
else:
|
|
raise NotImplementedError("optimizer {:} is not supported!".format(optimizer))
|
|
|
|
self.fitted = False
|
|
self.model.to(self.device)
|
|
|
|
@property
|
|
def use_gpu(self):
|
|
self.device == torch.device("cpu")
|
|
|
|
def loss_fn(self, pred, label):
|
|
mask = ~torch.isnan(label)
|
|
if self.opt_config["loss"] == "mse":
|
|
return F.mse_loss(pred[mask], label[mask])
|
|
else:
|
|
raise ValueError("unknown loss `{:}`".format(self.loss))
|
|
|
|
def metric_fn(self, pred, label):
|
|
# the metric score : higher is better
|
|
if self.metric == "" or self.metric == "loss":
|
|
return -self.loss_fn(pred, label)
|
|
else:
|
|
raise ValueError("unknown metric `{:}`".format(self.metric))
|
|
|
|
def train_or_test_epoch(self, xloader, model, loss_fn, metric_fn, is_train, optimizer=None):
|
|
if is_train:
|
|
model.train()
|
|
else:
|
|
model.eval()
|
|
score_meter, loss_meter = AverageMeter(), AverageMeter()
|
|
for ibatch, (feats, labels) in enumerate(xloader):
|
|
feats = feats.to(self.device, non_blocking=True)
|
|
labels = labels.to(self.device, non_blocking=True)
|
|
# forward the network
|
|
preds = model(feats)
|
|
loss = loss_fn(preds, labels)
|
|
with torch.no_grad():
|
|
score = self.metric_fn(preds, labels)
|
|
loss_meter.update(loss.item(), feats.size(0))
|
|
score_meter.update(score.item(), feats.size(0))
|
|
# optimize the network
|
|
if is_train and optimizer is not None:
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
torch.nn.utils.clip_grad_value_(model.parameters(), 3.0)
|
|
optimizer.step()
|
|
return loss_meter.avg, score_meter.avg
|
|
|
|
def fit(
|
|
self,
|
|
dataset: DatasetH,
|
|
save_path: Optional[Text] = None,
|
|
):
|
|
def _prepare_dataset(df_data):
|
|
return th_data.TensorDataset(
|
|
torch.from_numpy(df_data["feature"].values).float(),
|
|
torch.from_numpy(df_data["label"].values).squeeze().float(),
|
|
)
|
|
|
|
def _prepare_loader(dataset, shuffle):
|
|
return th_data.DataLoader(
|
|
dataset,
|
|
batch_size=self.opt_config["batch_size"],
|
|
drop_last=False,
|
|
pin_memory=True,
|
|
num_workers=self.opt_config["num_workers"],
|
|
shuffle=shuffle,
|
|
)
|
|
|
|
df_train, df_valid, df_test = dataset.prepare(
|
|
["train", "valid", "test"],
|
|
col_set=["feature", "label"],
|
|
data_key=DataHandlerLP.DK_L,
|
|
)
|
|
train_dataset, valid_dataset, test_dataset = (
|
|
_prepare_dataset(df_train),
|
|
_prepare_dataset(df_valid),
|
|
_prepare_dataset(df_test),
|
|
)
|
|
train_loader, valid_loader, test_loader = (
|
|
_prepare_loader(train_dataset, True),
|
|
_prepare_loader(valid_dataset, False),
|
|
_prepare_loader(test_dataset, False),
|
|
)
|
|
|
|
save_path = get_or_create_path(save_path)
|
|
self.logger.info("Fit procedure for [{:}] with save path={:}".format(self.__class__.__name__, save_path))
|
|
|
|
def _internal_test(ckp_epoch=None, results_dict=None):
|
|
with torch.no_grad():
|
|
train_loss, train_score = self.train_or_test_epoch(
|
|
train_loader, self.model, self.loss_fn, self.metric_fn, False, None
|
|
)
|
|
valid_loss, valid_score = self.train_or_test_epoch(
|
|
valid_loader, self.model, self.loss_fn, self.metric_fn, False, None
|
|
)
|
|
test_loss, test_score = self.train_or_test_epoch(
|
|
test_loader, self.model, self.loss_fn, self.metric_fn, False, None
|
|
)
|
|
xstr = "train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format(
|
|
train_score, valid_score, test_score
|
|
)
|
|
if ckp_epoch is not None and isinstance(results_dict, dict):
|
|
results_dict["train"][ckp_epoch] = train_score
|
|
results_dict["valid"][ckp_epoch] = valid_score
|
|
results_dict["test"][ckp_epoch] = test_score
|
|
return dict(train=train_score, valid=valid_score, test=test_score), xstr
|
|
|
|
# Pre-fetch the potential checkpoints
|
|
ckp_path = os.path.join(save_path, "{:}.pth".format(self.__class__.__name__))
|
|
if os.path.exists(ckp_path):
|
|
ckp_data = torch.load(ckp_path)
|
|
import pdb
|
|
|
|
pdb.set_trace()
|
|
else:
|
|
stop_steps, best_score, best_epoch = 0, -np.inf, -1
|
|
start_epoch = 0
|
|
results_dict = dict(train=OrderedDict(), valid=OrderedDict(), test=OrderedDict())
|
|
_, eval_str = _internal_test(-1, results_dict)
|
|
self.logger.info("Training from scratch, metrics@start: {:}".format(eval_str))
|
|
|
|
for iepoch in range(start_epoch, self.opt_config["epochs"]):
|
|
self.logger.info(
|
|
"Epoch={:03d}/{:03d} ::==>> Best valid @{:03d} ({:.6f})".format(
|
|
iepoch, self.opt_config["epochs"], best_epoch, best_score
|
|
)
|
|
)
|
|
|
|
train_loss, train_score = self.train_or_test_epoch(
|
|
train_loader, self.model, self.loss_fn, self.metric_fn, True, self.train_optimizer
|
|
)
|
|
self.logger.info("Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score))
|
|
|
|
current_eval_scores, eval_str = _internal_test(iepoch, results_dict)
|
|
self.logger.info("Evaluating :: {:}".format(eval_str))
|
|
|
|
if current_eval_scores["valid"] > best_score:
|
|
stop_steps, best_epoch, best_score = 0, iepoch, current_eval_scores["valid"]
|
|
best_param = copy.deepcopy(self.model.state_dict())
|
|
else:
|
|
stop_steps += 1
|
|
if stop_steps >= self.opt_config["early_stop"]:
|
|
self.logger.info("early stop at {:}-th epoch, where the best is @{:}".format(iepoch, best_epoch))
|
|
break
|
|
save_info = dict(
|
|
net_config=self.net_config,
|
|
opt_config=self.opt_config,
|
|
net_state_dict=self.model.state_dict(),
|
|
opt_state_dict=self.train_optimizer.state_dict(),
|
|
best_param=best_param,
|
|
stop_steps=stop_steps,
|
|
best_score=best_score,
|
|
best_epoch=best_epoch,
|
|
start_epoch=iepoch + 1,
|
|
)
|
|
torch.save(save_info, ckp_path)
|
|
self.logger.info("The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch))
|
|
self.model.load_state_dict(best_param)
|
|
|
|
if self.use_gpu:
|
|
torch.cuda.empty_cache()
|
|
self.fitted = True
|
|
|
|
def predict(self, dataset):
|
|
if not self.fitted:
|
|
raise ValueError("The model is not fitted yet!")
|
|
x_test = dataset.prepare("test", col_set="feature")
|
|
index = x_test.index
|
|
|
|
self.model.eval()
|
|
x_values = x_test.values
|
|
sample_num, batch_size = x_values.shape[0], self.opt_config["batch_size"]
|
|
preds = []
|
|
|
|
for begin in range(sample_num)[::batch_size]:
|
|
|
|
if sample_num - begin < batch_size:
|
|
end = sample_num
|
|
else:
|
|
end = begin + batch_size
|
|
|
|
x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device)
|
|
|
|
with torch.no_grad():
|
|
pred = self.model(x_batch).detach().cpu().numpy()
|
|
preds.append(pred)
|
|
|
|
return pd.Series(np.concatenate(preds), index=index)
|
|
|
|
|
|
# Real Model
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0):
|
|
super(Attention, self).__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
|
|
self.scale = qk_scale or math.sqrt(head_dim)
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
def forward(self, x):
|
|
B, N, C = x.shape
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
attn = attn.softmax(dim=-1)
|
|
attn = self.attn_drop(attn)
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim,
|
|
num_heads,
|
|
mlp_ratio=4.0,
|
|
qkv_bias=False,
|
|
qk_scale=None,
|
|
attn_drop=0.0,
|
|
mlp_drop=0.0,
|
|
drop_path=0.0,
|
|
act_layer=nn.GELU,
|
|
norm_layer=nn.LayerNorm,
|
|
):
|
|
super(Block, self).__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention(
|
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop
|
|
)
|
|
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
|
self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
|
self.norm2 = norm_layer(dim)
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop)
|
|
|
|
def forward(self, x):
|
|
x = x + self.drop_path(self.attn(self.norm1(x)))
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
return x
|
|
|
|
|
|
class SimpleEmbed(nn.Module):
|
|
def __init__(self, d_feat, embed_dim):
|
|
super(SimpleEmbed, self).__init__()
|
|
self.d_feat = d_feat
|
|
self.embed_dim = embed_dim
|
|
self.proj = nn.Linear(d_feat, embed_dim)
|
|
|
|
def forward(self, x):
|
|
x = x.reshape(len(x), self.d_feat, -1) # [N, F*T] -> [N, F, T]
|
|
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
|
|
out = self.proj(x) * math.sqrt(self.embed_dim)
|
|
return out
|
|
|
|
|
|
class TransformerModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
d_feat: int,
|
|
embed_dim: int = 64,
|
|
depth: int = 4,
|
|
num_heads: int = 4,
|
|
mlp_ratio: float = 4.0,
|
|
qkv_bias: bool = True,
|
|
qk_scale: Optional[float] = None,
|
|
pos_drop=0.0,
|
|
mlp_drop_rate=0.0,
|
|
attn_drop_rate=0.0,
|
|
drop_path_rate=0.0,
|
|
norm_layer=None,
|
|
):
|
|
"""
|
|
Args:
|
|
d_feat (int, tuple): input image size
|
|
embed_dim (int): embedding dimension
|
|
depth (int): depth of transformer
|
|
num_heads (int): number of attention heads
|
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
|
qkv_bias (bool): enable bias for qkv if True
|
|
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
|
|
pos_drop (float): dropout rate for the positional embedding
|
|
mlp_drop_rate (float): the dropout rate for MLP layers in a block
|
|
attn_drop_rate (float): attention dropout rate
|
|
drop_path_rate (float): stochastic depth rate
|
|
norm_layer: (nn.Module): normalization layer
|
|
"""
|
|
super(TransformerModel, self).__init__()
|
|
self.embed_dim = embed_dim
|
|
self.num_features = embed_dim
|
|
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
|
|
|
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65, dropout=pos_drop)
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
Block(
|
|
dim=embed_dim,
|
|
num_heads=num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
attn_drop=attn_drop_rate,
|
|
mlp_drop=mlp_drop_rate,
|
|
drop_path=dpr[i],
|
|
norm_layer=norm_layer,
|
|
)
|
|
for i in range(depth)
|
|
]
|
|
)
|
|
self.norm = norm_layer(embed_dim)
|
|
|
|
# regression head
|
|
self.head = nn.Linear(self.num_features, 1)
|
|
|
|
xlayers.trunc_normal_(self.cls_token, std=0.02)
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
if isinstance(m, nn.Linear):
|
|
xlayers.trunc_normal_(m.weight, std=0.02)
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
nn.init.constant_(m.bias, 0)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.constant_(m.bias, 0)
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
def forward_features(self, x):
|
|
batch, flatten_size = x.shape
|
|
feats = self.input_embed(x) # batch * 60 * 64
|
|
|
|
cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
|
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
|
|
feats_w_tp = self.pos_embed(feats_w_ct)
|
|
|
|
xfeats = feats_w_tp
|
|
for block in self.blocks:
|
|
xfeats = block(xfeats)
|
|
|
|
xfeats = self.norm(xfeats)[:, 0]
|
|
return xfeats
|
|
|
|
def forward(self, x):
|
|
feats = self.forward_features(x)
|
|
predicts = self.head(feats).squeeze(-1)
|
|
return predicts
|