183 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
 | |
| #####################################################
 | |
| import time, torch
 | |
| from procedures import prepare_seed, get_optim_scheduler
 | |
| from utils import get_model_infos, obtain_accuracy
 | |
| from config_utils import dict2config
 | |
| from log_utils import AverageMeter, time_string, convert_secs2time
 | |
| from models import get_cell_based_tiny_net
 | |
| 
 | |
| 
 | |
| __all__ = ["evaluate_for_seed", "pure_evaluate"]
 | |
| 
 | |
| 
 | |
| def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()):
 | |
|     data_time, batch_time, batch = AverageMeter(), AverageMeter(), None
 | |
|     losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
 | |
|     latencies = []
 | |
|     network.eval()
 | |
|     with torch.no_grad():
 | |
|         end = time.time()
 | |
|         for i, (inputs, targets) in enumerate(xloader):
 | |
|             targets = targets.cuda(non_blocking=True)
 | |
|             inputs = inputs.cuda(non_blocking=True)
 | |
|             data_time.update(time.time() - end)
 | |
|             # forward
 | |
|             features, logits = network(inputs)
 | |
|             loss = criterion(logits, targets)
 | |
|             batch_time.update(time.time() - end)
 | |
|             if batch is None or batch == inputs.size(0):
 | |
|                 batch = inputs.size(0)
 | |
|                 latencies.append(batch_time.val - data_time.val)
 | |
|             # record loss and accuracy
 | |
|             prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
 | |
|             losses.update(loss.item(), inputs.size(0))
 | |
|             top1.update(prec1.item(), inputs.size(0))
 | |
|             top5.update(prec5.item(), inputs.size(0))
 | |
|             end = time.time()
 | |
|     if len(latencies) > 2:
 | |
|         latencies = latencies[1:]
 | |
|     return losses.avg, top1.avg, top5.avg, latencies
 | |
| 
 | |
| 
 | |
| def procedure(xloader, network, criterion, scheduler, optimizer, mode):
 | |
|     losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
 | |
|     if mode == "train":
 | |
|         network.train()
 | |
|     elif mode == "valid":
 | |
|         network.eval()
 | |
|     else:
 | |
|         raise ValueError("The mode is not right : {:}".format(mode))
 | |
| 
 | |
|     data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time()
 | |
|     for i, (inputs, targets) in enumerate(xloader):
 | |
|         if mode == "train":
 | |
|             scheduler.update(None, 1.0 * i / len(xloader))
 | |
| 
 | |
|         targets = targets.cuda(non_blocking=True)
 | |
|         if mode == "train":
 | |
|             optimizer.zero_grad()
 | |
|         # forward
 | |
|         features, logits = network(inputs)
 | |
|         loss = criterion(logits, targets)
 | |
|         # backward
 | |
|         if mode == "train":
 | |
|             loss.backward()
 | |
|             optimizer.step()
 | |
|         # record loss and accuracy
 | |
|         prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
 | |
|         losses.update(loss.item(), inputs.size(0))
 | |
|         top1.update(prec1.item(), inputs.size(0))
 | |
|         top5.update(prec5.item(), inputs.size(0))
 | |
|         # count time
 | |
|         batch_time.update(time.time() - end)
 | |
|         end = time.time()
 | |
|     return losses.avg, top1.avg, top5.avg, batch_time.sum
 | |
| 
 | |
| 
 | |
| def evaluate_for_seed(
 | |
|     arch_config, config, arch, train_loader, valid_loaders, seed, logger
 | |
| ):
 | |
| 
 | |
|     prepare_seed(seed)  # random seed
 | |
|     net = get_cell_based_tiny_net(
 | |
|         dict2config(
 | |
|             {
 | |
|                 "name": "infer.tiny",
 | |
|                 "C": arch_config["channel"],
 | |
|                 "N": arch_config["num_cells"],
 | |
|                 "genotype": arch,
 | |
|                 "num_classes": config.class_num,
 | |
|             },
 | |
|             None,
 | |
|         )
 | |
|     )
 | |
|     # net = TinyNetwork(arch_config['channel'], arch_config['num_cells'], arch, config.class_num)
 | |
|     flop, param = get_model_infos(net, config.xshape)
 | |
|     logger.log("Network : {:}".format(net.get_message()), False)
 | |
|     logger.log(
 | |
|         "{:} Seed-------------------------- {:} --------------------------".format(
 | |
|             time_string(), seed
 | |
|         )
 | |
|     )
 | |
|     logger.log("FLOP = {:} MB, Param = {:} MB".format(flop, param))
 | |
|     # train and valid
 | |
|     optimizer, scheduler, criterion = get_optim_scheduler(net.parameters(), config)
 | |
|     network, criterion = torch.nn.DataParallel(net).cuda(), criterion.cuda()
 | |
|     # start training
 | |
|     start_time, epoch_time, total_epoch = (
 | |
|         time.time(),
 | |
|         AverageMeter(),
 | |
|         config.epochs + config.warmup,
 | |
|     )
 | |
|     (
 | |
|         train_losses,
 | |
|         train_acc1es,
 | |
|         train_acc5es,
 | |
|         valid_losses,
 | |
|         valid_acc1es,
 | |
|         valid_acc5es,
 | |
|     ) = ({}, {}, {}, {}, {}, {})
 | |
|     train_times, valid_times = {}, {}
 | |
|     for epoch in range(total_epoch):
 | |
|         scheduler.update(epoch, 0.0)
 | |
| 
 | |
|         train_loss, train_acc1, train_acc5, train_tm = procedure(
 | |
|             train_loader, network, criterion, scheduler, optimizer, "train"
 | |
|         )
 | |
|         train_losses[epoch] = train_loss
 | |
|         train_acc1es[epoch] = train_acc1
 | |
|         train_acc5es[epoch] = train_acc5
 | |
|         train_times[epoch] = train_tm
 | |
|         with torch.no_grad():
 | |
|             for key, xloder in valid_loaders.items():
 | |
|                 valid_loss, valid_acc1, valid_acc5, valid_tm = procedure(
 | |
|                     xloder, network, criterion, None, None, "valid"
 | |
|                 )
 | |
|                 valid_losses["{:}@{:}".format(key, epoch)] = valid_loss
 | |
|                 valid_acc1es["{:}@{:}".format(key, epoch)] = valid_acc1
 | |
|                 valid_acc5es["{:}@{:}".format(key, epoch)] = valid_acc5
 | |
|                 valid_times["{:}@{:}".format(key, epoch)] = valid_tm
 | |
| 
 | |
|         # measure elapsed time
 | |
|         epoch_time.update(time.time() - start_time)
 | |
|         start_time = time.time()
 | |
|         need_time = "Time Left: {:}".format(
 | |
|             convert_secs2time(epoch_time.avg * (total_epoch - epoch - 1), True)
 | |
|         )
 | |
|         logger.log(
 | |
|             "{:} {:} epoch={:03d}/{:03d} :: Train [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%] Valid [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%]".format(
 | |
|                 time_string(),
 | |
|                 need_time,
 | |
|                 epoch,
 | |
|                 total_epoch,
 | |
|                 train_loss,
 | |
|                 train_acc1,
 | |
|                 train_acc5,
 | |
|                 valid_loss,
 | |
|                 valid_acc1,
 | |
|                 valid_acc5,
 | |
|             )
 | |
|         )
 | |
|     info_seed = {
 | |
|         "flop": flop,
 | |
|         "param": param,
 | |
|         "channel": arch_config["channel"],
 | |
|         "num_cells": arch_config["num_cells"],
 | |
|         "config": config._asdict(),
 | |
|         "total_epoch": total_epoch,
 | |
|         "train_losses": train_losses,
 | |
|         "train_acc1es": train_acc1es,
 | |
|         "train_acc5es": train_acc5es,
 | |
|         "train_times": train_times,
 | |
|         "valid_losses": valid_losses,
 | |
|         "valid_acc1es": valid_acc1es,
 | |
|         "valid_acc5es": valid_acc5es,
 | |
|         "valid_times": valid_times,
 | |
|         "net_state_dict": net.state_dict(),
 | |
|         "net_string": "{:}".format(net),
 | |
|         "finish-train": True,
 | |
|     }
 | |
|     return info_seed
 |