134 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
 | |
| #####################################################
 | |
| 
 | |
| import inspect
 | |
| import os
 | |
| import pprint
 | |
| import logging
 | |
| from copy import deepcopy
 | |
| import qlib
 | |
| from qlib.utils import init_instance_by_config
 | |
| from qlib.workflow import R
 | |
| from qlib.utils import flatten_dict
 | |
| from qlib.log import get_module_logger
 | |
| 
 | |
| 
 | |
| def set_log_basic_config(filename=None, format=None, level=None):
 | |
|     """
 | |
|     Set the basic configuration for the logging system.
 | |
|     See details at https://docs.python.org/3/library/logging.html#logging.basicConfig
 | |
|     :param filename: str or None
 | |
|         The path to save the logs.
 | |
|     :param format: the logging format
 | |
|     :param level: int
 | |
|     :return: Logger
 | |
|         Logger object.
 | |
|     """
 | |
|     from qlib.config import C
 | |
| 
 | |
|     if level is None:
 | |
|         level = C.logging_level
 | |
| 
 | |
|     if format is None:
 | |
|         format = C.logging_config["formatters"]["logger_format"]["format"]
 | |
| 
 | |
|     # Remove all handlers associated with the root logger object.
 | |
|     for handler in logging.root.handlers[:]:
 | |
|         logging.root.removeHandler(handler)
 | |
|     logging.basicConfig(filename=filename, format=format, level=level)
 | |
| 
 | |
| 
 | |
| def update_gpu(config, gpu):
 | |
|     config = deepcopy(config)
 | |
|     if "task" in config and "model" in config["task"]:
 | |
|         if "GPU" in config["task"]["model"]:
 | |
|             config["task"]["model"]["GPU"] = gpu
 | |
|         elif (
 | |
|             "kwargs" in config["task"]["model"]
 | |
|             and "GPU" in config["task"]["model"]["kwargs"]
 | |
|         ):
 | |
|             config["task"]["model"]["kwargs"]["GPU"] = gpu
 | |
|     elif "model" in config:
 | |
|         if "GPU" in config["model"]:
 | |
|             config["model"]["GPU"] = gpu
 | |
|         elif "kwargs" in config["model"] and "GPU" in config["model"]["kwargs"]:
 | |
|             config["model"]["kwargs"]["GPU"] = gpu
 | |
|     elif "kwargs" in config and "GPU" in config["kwargs"]:
 | |
|         config["kwargs"]["GPU"] = gpu
 | |
|     elif "GPU" in config:
 | |
|         config["GPU"] = gpu
 | |
|     return config
 | |
| 
 | |
| 
 | |
| def update_market(config, market):
 | |
|     config = deepcopy(config.copy())
 | |
|     config["market"] = market
 | |
|     config["data_handler_config"]["instruments"] = market
 | |
|     return config
 | |
| 
 | |
| 
 | |
| def run_exp(
 | |
|     task_config,
 | |
|     dataset,
 | |
|     experiment_name,
 | |
|     recorder_name,
 | |
|     uri,
 | |
|     model_obj_name="model.pkl",
 | |
| ):
 | |
| 
 | |
|     model = init_instance_by_config(task_config["model"])
 | |
|     model_fit_kwargs = dict(dataset=dataset)
 | |
| 
 | |
|     # Let's start the experiment.
 | |
|     with R.start(
 | |
|         experiment_name=experiment_name,
 | |
|         recorder_name=recorder_name,
 | |
|         uri=uri,
 | |
|         resume=True,
 | |
|     ):
 | |
|         # Setup log
 | |
|         recorder_root_dir = R.get_recorder().get_local_dir()
 | |
|         log_file = os.path.join(recorder_root_dir, "{:}.log".format(experiment_name))
 | |
| 
 | |
|         set_log_basic_config(log_file)
 | |
|         logger = get_module_logger("q.run_exp")
 | |
|         logger.info("task_config::\n{:}".format(pprint.pformat(task_config, indent=2)))
 | |
|         logger.info("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri))
 | |
|         logger.info("dataset={:}".format(dataset))
 | |
| 
 | |
|         # Train model
 | |
|         try:
 | |
|             model = R.load_object(model_obj_name)
 | |
|             logger.info("[Find existing object from {:}]".format(model_obj_name))
 | |
|         except OSError:
 | |
|             R.log_params(**flatten_dict(task_config))
 | |
|             if "save_path" in inspect.getfullargspec(model.fit).args:
 | |
|                 model_fit_kwargs["save_path"] = os.path.join(
 | |
|                     recorder_root_dir, "model.ckp"
 | |
|                 )
 | |
|             elif "save_dir" in inspect.getfullargspec(model.fit).args:
 | |
|                 model_fit_kwargs["save_dir"] = os.path.join(
 | |
|                     recorder_root_dir, "model-ckps"
 | |
|                 )
 | |
|             model.fit(**model_fit_kwargs)
 | |
|             R.save_objects(**{model_obj_name: model})
 | |
|         except:
 | |
|             raise ValueError("Something wrong.")
 | |
|         # Get the recorder
 | |
|         recorder = R.get_recorder()
 | |
| 
 | |
|         # Generate records: prediction, backtest, and analysis
 | |
|         for record in task_config["record"]:
 | |
|             record = deepcopy(record)
 | |
|             if record["class"] == "SignalRecord":
 | |
|                 srconf = {"model": model, "dataset": dataset, "recorder": recorder}
 | |
|                 record["kwargs"].update(srconf)
 | |
|                 sr = init_instance_by_config(record)
 | |
|                 sr.generate()
 | |
|             else:
 | |
|                 rconf = {"recorder": recorder}
 | |
|                 record["kwargs"].update(rconf)
 | |
|                 ar = init_instance_by_config(record)
 | |
|                 ar.generate()
 |