64 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
 | |
| #####################################################
 | |
| import torch.nn as nn
 | |
| from ..cell_operations import ResNetBasicblock
 | |
| from .cells import InferCell
 | |
| 
 | |
| 
 | |
| # The macro structure for architectures in NAS-Bench-201
 | |
| class TinyNetwork(nn.Module):
 | |
|     def __init__(self, C, N, genotype, num_classes):
 | |
|         super(TinyNetwork, self).__init__()
 | |
|         self._C = C
 | |
|         self._layerN = N
 | |
| 
 | |
|         self.stem = nn.Sequential(
 | |
|             nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C)
 | |
|         )
 | |
| 
 | |
|         layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
 | |
|         layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
 | |
| 
 | |
|         C_prev = C
 | |
|         self.cells = nn.ModuleList()
 | |
|         for index, (C_curr, reduction) in enumerate(
 | |
|             zip(layer_channels, layer_reductions)
 | |
|         ):
 | |
|             if reduction:
 | |
|                 cell = ResNetBasicblock(C_prev, C_curr, 2, True)
 | |
|             else:
 | |
|                 cell = InferCell(genotype, C_prev, C_curr, 1)
 | |
|             self.cells.append(cell)
 | |
|             C_prev = cell.out_dim
 | |
|         self._Layer = len(self.cells)
 | |
| 
 | |
|         self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
 | |
|         self.global_pooling = nn.AdaptiveAvgPool2d(1)
 | |
|         self.classifier = nn.Linear(C_prev, num_classes)
 | |
| 
 | |
|     def get_message(self):
 | |
|         string = self.extra_repr()
 | |
|         for i, cell in enumerate(self.cells):
 | |
|             string += "\n {:02d}/{:02d} :: {:}".format(
 | |
|                 i, len(self.cells), cell.extra_repr()
 | |
|             )
 | |
|         return string
 | |
| 
 | |
|     def extra_repr(self):
 | |
|         return "{name}(C={_C}, N={_layerN}, L={_Layer})".format(
 | |
|             name=self.__class__.__name__, **self.__dict__
 | |
|         )
 | |
| 
 | |
|     def forward(self, inputs):
 | |
|         feature = self.stem(inputs)
 | |
|         for i, cell in enumerate(self.cells):
 | |
|             feature = cell(feature)
 | |
| 
 | |
|         out = self.lastact(feature)
 | |
|         out = self.global_pooling(out)
 | |
|         out = out.view(out.size(0), -1)
 | |
|         logits = self.classifier(out)
 | |
| 
 | |
|         return out, logits
 |