234 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			234 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
 | |
| ###################################################################
 | |
| # BOHB: Robust and Efficient Hyperparameter Optimization at Scale #
 | |
| # required to install hpbandster ##################################
 | |
| # bash ./scripts-search/algos/BOHB.sh -1         ##################
 | |
| ###################################################################
 | |
| import os, sys, time, random, argparse
 | |
| from copy import deepcopy
 | |
| from pathlib import Path
 | |
| import torch
 | |
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
 | |
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import load_config
 | |
| from datasets     import get_datasets, SearchDataset
 | |
| from procedures   import prepare_seed, prepare_logger
 | |
| from log_utils    import AverageMeter, time_string, convert_secs2time
 | |
| from nas_201_api  import NASBench201API as API
 | |
| from models       import CellStructure, get_search_spaces
 | |
| # BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018
 | |
| import ConfigSpace
 | |
| from hpbandster.optimizers.bohb import BOHB
 | |
| import hpbandster.core.nameserver as hpns
 | |
| from hpbandster.core.worker import Worker
 | |
| 
 | |
| 
 | |
| def get_configuration_space(max_nodes, search_space):
 | |
|   cs = ConfigSpace.ConfigurationSpace()
 | |
|   #edge2index   = {}
 | |
|   for i in range(1, max_nodes):
 | |
|     for j in range(i):
 | |
|       node_str = '{:}<-{:}'.format(i, j)
 | |
|       cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
 | |
|   return cs
 | |
| 
 | |
| 
 | |
| def config2structure_func(max_nodes):
 | |
|   def config2structure(config):
 | |
|     genotypes = []
 | |
|     for i in range(1, max_nodes):
 | |
|       xlist = []
 | |
|       for j in range(i):
 | |
|         node_str = '{:}<-{:}'.format(i, j)
 | |
|         op_name = config[node_str]
 | |
|         xlist.append((op_name, j))
 | |
|       genotypes.append( tuple(xlist) )
 | |
|     return CellStructure( genotypes )
 | |
|   return config2structure
 | |
| 
 | |
| 
 | |
| class MyWorker(Worker):
 | |
| 
 | |
|   def __init__(self, *args, convert_func=None, dataname=None, nas_bench=None, time_budget=None, **kwargs):
 | |
|     super().__init__(*args, **kwargs)
 | |
|     self.convert_func   = convert_func
 | |
|     self._dataname      = dataname
 | |
|     self._nas_bench     = nas_bench
 | |
|     self.time_budget    = time_budget
 | |
|     self.seen_archs     = []
 | |
|     self.sim_cost_time  = 0
 | |
|     self.real_cost_time = 0
 | |
|     self.is_end         = False
 | |
| 
 | |
|   def get_the_best(self):
 | |
|     assert len(self.seen_archs) > 0
 | |
|     best_index, best_acc = -1, None
 | |
|     for arch_index in self.seen_archs:
 | |
|       info = self._nas_bench.get_more_info(arch_index, self._dataname, None, True, True)
 | |
|       vacc = info['valid-accuracy']
 | |
|       if best_acc is None or best_acc < vacc:
 | |
|         best_acc = vacc
 | |
|         best_index = arch_index
 | |
|     assert best_index != -1
 | |
|     return best_index
 | |
| 
 | |
|   def compute(self, config, budget, **kwargs):
 | |
|     start_time = time.time()
 | |
|     structure  = self.convert_func( config )
 | |
|     arch_index = self._nas_bench.query_index_by_arch( structure )
 | |
|     info       = self._nas_bench.get_more_info(arch_index, self._dataname, None, True, True)
 | |
|     cur_time   = info['train-all-time'] + info['valid-per-time']
 | |
|     cur_vacc   = info['valid-accuracy']
 | |
|     self.real_cost_time += (time.time() - start_time)
 | |
|     if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end:
 | |
|       self.sim_cost_time += cur_time
 | |
|       self.seen_archs.append( arch_index )
 | |
|       return ({'loss': 100 - float(cur_vacc),
 | |
|                'info': {'seen-arch'     : len(self.seen_archs),
 | |
|                         'sim-test-time' : self.sim_cost_time,
 | |
|                         'current-arch'  : arch_index}
 | |
|             })
 | |
|     else:
 | |
|       self.is_end = True
 | |
|       return ({'loss': 100,
 | |
|                'info': {'seen-arch'     : len(self.seen_archs),
 | |
|                         'sim-test-time' : self.sim_cost_time,
 | |
|                         'current-arch'  : None}
 | |
|             })
 | |
| 
 | |
| 
 | |
| def main(xargs, nas_bench):
 | |
|   assert torch.cuda.is_available(), 'CUDA is not available.'
 | |
|   torch.backends.cudnn.enabled   = True
 | |
|   torch.backends.cudnn.benchmark = False
 | |
|   torch.backends.cudnn.deterministic = True
 | |
|   torch.set_num_threads( xargs.workers )
 | |
|   prepare_seed(xargs.rand_seed)
 | |
|   logger = prepare_logger(args)
 | |
| 
 | |
|   if xargs.dataset == 'cifar10':
 | |
|     dataname = 'cifar10-valid'
 | |
|   else:
 | |
|     dataname = xargs.dataset
 | |
|   if xargs.data_path is not None:
 | |
|     train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
 | |
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
 | |
|     cifar_split = load_config(split_Fpath, None, None)
 | |
|     train_split, valid_split = cifar_split.train, cifar_split.valid
 | |
|     logger.log('Load split file from {:}'.format(split_Fpath))
 | |
|     config_path = 'configs/nas-benchmark/algos/R-EA.config'
 | |
|     config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
 | |
|     # To split data
 | |
|     train_data_v2 = deepcopy(train_data)
 | |
|     train_data_v2.transform = valid_data.transform
 | |
|     valid_data    = train_data_v2
 | |
|     search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
 | |
|     # data loader
 | |
|     train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
 | |
|     valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
 | |
|     logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
 | |
|     logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
 | |
|     extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
 | |
|   else:
 | |
|     config_path = 'configs/nas-benchmark/algos/R-EA.config'
 | |
|     config = load_config(config_path, None, logger)
 | |
|     logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
 | |
|     extra_info = {'config': config, 'train_loader': None, 'valid_loader': None}
 | |
| 
 | |
|   # nas dataset load
 | |
|   assert xargs.arch_nas_dataset is not None and os.path.isfile(xargs.arch_nas_dataset)
 | |
|   search_space = get_search_spaces('cell', xargs.search_space_name)
 | |
|   cs = get_configuration_space(xargs.max_nodes, search_space)
 | |
| 
 | |
|   config2structure = config2structure_func(xargs.max_nodes)
 | |
|   hb_run_id = '0'
 | |
| 
 | |
|   NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0)
 | |
|   ns_host, ns_port = NS.start()
 | |
|   num_workers = 1
 | |
| 
 | |
|   #nas_bench = AANASBenchAPI(xargs.arch_nas_dataset)
 | |
|   #logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string()))
 | |
|   workers = []
 | |
|   for i in range(num_workers):
 | |
|     w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataname=dataname, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i)
 | |
|     w.run(background=True)
 | |
|     workers.append(w)
 | |
| 
 | |
|   start_time = time.time()
 | |
|   bohb = BOHB(configspace=cs,
 | |
|             run_id=hb_run_id,
 | |
|             eta=3, min_budget=12, max_budget=200,
 | |
|             nameserver=ns_host,
 | |
|             nameserver_port=ns_port,
 | |
|             num_samples=xargs.num_samples,
 | |
|             random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor,
 | |
|             ping_interval=10, min_bandwidth=xargs.min_bandwidth)
 | |
|   
 | |
|   results = bohb.run(xargs.n_iters, min_n_workers=num_workers)
 | |
| 
 | |
|   bohb.shutdown(shutdown_workers=True)
 | |
|   NS.shutdown()
 | |
| 
 | |
|   real_cost_time = time.time() - start_time
 | |
| 
 | |
|   id2config = results.get_id2config_mapping()
 | |
|   incumbent = results.get_incumbent_id()
 | |
|   logger.log('Best found configuration: {:} within {:.3f} s'.format(id2config[incumbent]['config'], real_cost_time))
 | |
|   best_arch = config2structure( id2config[incumbent]['config'] )
 | |
| 
 | |
|   info = nas_bench.query_by_arch( best_arch )
 | |
|   if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
 | |
|   else           : logger.log('{:}'.format(info))
 | |
|   logger.log('-'*100)
 | |
| 
 | |
|   logger.log('workers : {:.1f}s with {:} archs'.format(workers[0].time_budget, len(workers[0].seen_archs)))
 | |
|   logger.close()
 | |
|   return logger.log_dir, nas_bench.query_index_by_arch( best_arch ), real_cost_time
 | |
|   
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|   parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
 | |
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset')
 | |
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
 | |
|   # channels and number-of-cells
 | |
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.')
 | |
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.')
 | |
|   parser.add_argument('--channel',            type=int,   help='The number of channels.')
 | |
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.')
 | |
|   parser.add_argument('--time_budget',        type=int,   help='The total time cost budge for searching (in seconds).')
 | |
|   # BOHB
 | |
|   parser.add_argument('--strategy', default="sampling",  type=str, nargs='?', help='optimization strategy for the acquisition function')
 | |
|   parser.add_argument('--min_bandwidth',    default=.3,  type=float, nargs='?', help='minimum bandwidth for KDE')
 | |
|   parser.add_argument('--num_samples',      default=64,  type=int, nargs='?', help='number of samples for the acquisition function')
 | |
|   parser.add_argument('--random_fraction',  default=.33, type=float, nargs='?', help='fraction of random configurations')
 | |
|   parser.add_argument('--bandwidth_factor', default=3,   type=int, nargs='?', help='factor multiplied to the bandwidth')
 | |
|   parser.add_argument('--n_iters',          default=100, type=int, nargs='?', help='number of iterations for optimization method')
 | |
|   # log
 | |
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)')
 | |
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.')
 | |
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).')
 | |
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)')
 | |
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed')
 | |
|   args = parser.parse_args()
 | |
|   #if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
 | |
|   if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
 | |
|     nas_bench = None
 | |
|   else:
 | |
|     print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
 | |
|     nas_bench = API(args.arch_nas_dataset)
 | |
|   if args.rand_seed < 0:
 | |
|     save_dir, all_indexes, num, all_times = None, [], 500, []
 | |
|     for i in range(num):
 | |
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num))
 | |
|       args.rand_seed = random.randint(1, 100000)
 | |
|       save_dir, index, ctime = main(args, nas_bench)
 | |
|       all_indexes.append( index ) 
 | |
|       all_times.append( ctime )
 | |
|     print ('\n average time : {:.3f} s'.format(sum(all_times)/len(all_times)))
 | |
|     torch.save(all_indexes, save_dir / 'results.pth')
 | |
|   else:
 | |
|     main(args, nas_bench)
 |