135 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
 | |
| ##############################################################################
 | |
| # Random Search for Hyper-Parameter Optimization, JMLR 2012 ##################
 | |
| ##############################################################################
 | |
| # python ./exps/NATS-algos/random_wo_share.py --dataset cifar10 --search_space tss
 | |
| # python ./exps/NATS-algos/random_wo_share.py --dataset cifar100 --search_space tss
 | |
| # python ./exps/NATS-algos/random_wo_share.py --dataset ImageNet16-120 --search_space tss
 | |
| ##############################################################################
 | |
| import os, sys, time, glob, random, argparse
 | |
| import numpy as np, collections
 | |
| from copy import deepcopy
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from pathlib import Path
 | |
| 
 | |
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
 | |
| if str(lib_dir) not in sys.path:
 | |
|     sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import load_config, dict2config, configure2str
 | |
| from datasets import get_datasets, SearchDataset
 | |
| from procedures import (
 | |
|     prepare_seed,
 | |
|     prepare_logger,
 | |
|     save_checkpoint,
 | |
|     copy_checkpoint,
 | |
|     get_optim_scheduler,
 | |
| )
 | |
| from utils import get_model_infos, obtain_accuracy
 | |
| from log_utils import AverageMeter, time_string, convert_secs2time
 | |
| from models import get_search_spaces
 | |
| from nats_bench import create
 | |
| from regularized_ea import random_topology_func, random_size_func
 | |
| 
 | |
| 
 | |
| def main(xargs, api):
 | |
|     torch.set_num_threads(4)
 | |
|     prepare_seed(xargs.rand_seed)
 | |
|     logger = prepare_logger(args)
 | |
| 
 | |
|     logger.log("{:} use api : {:}".format(time_string(), api))
 | |
|     api.reset_time()
 | |
| 
 | |
|     search_space = get_search_spaces(xargs.search_space, "nats-bench")
 | |
|     if xargs.search_space == "tss":
 | |
|         random_arch = random_topology_func(search_space)
 | |
|     else:
 | |
|         random_arch = random_size_func(search_space)
 | |
| 
 | |
|     best_arch, best_acc, total_time_cost, history = None, -1, [], []
 | |
|     current_best_index = []
 | |
|     while len(total_time_cost) == 0 or total_time_cost[-1] < xargs.time_budget:
 | |
|         arch = random_arch()
 | |
|         accuracy, _, _, total_cost = api.simulate_train_eval(
 | |
|             arch, xargs.dataset, hp="12"
 | |
|         )
 | |
|         total_time_cost.append(total_cost)
 | |
|         history.append(arch)
 | |
|         if best_arch is None or best_acc < accuracy:
 | |
|             best_acc, best_arch = accuracy, arch
 | |
|         logger.log(
 | |
|             "[{:03d}] : {:} : accuracy = {:.2f}%".format(len(history), arch, accuracy)
 | |
|         )
 | |
|         current_best_index.append(api.query_index_by_arch(best_arch))
 | |
|     logger.log(
 | |
|         "{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s.".format(
 | |
|             time_string(), best_arch, best_acc, len(history), total_time_cost[-1]
 | |
|         )
 | |
|     )
 | |
| 
 | |
|     info = api.query_info_str_by_arch(
 | |
|         best_arch, "200" if xargs.search_space == "tss" else "90"
 | |
|     )
 | |
|     logger.log("{:}".format(info))
 | |
|     logger.log("-" * 100)
 | |
|     logger.close()
 | |
|     return logger.log_dir, current_best_index, total_time_cost
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser("Random NAS")
 | |
|     parser.add_argument(
 | |
|         "--dataset",
 | |
|         type=str,
 | |
|         choices=["cifar10", "cifar100", "ImageNet16-120"],
 | |
|         help="Choose between Cifar10/100 and ImageNet-16.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--search_space",
 | |
|         type=str,
 | |
|         choices=["tss", "sss"],
 | |
|         help="Choose the search space.",
 | |
|     )
 | |
| 
 | |
|     parser.add_argument(
 | |
|         "--time_budget",
 | |
|         type=int,
 | |
|         default=20000,
 | |
|         help="The total time cost budge for searching (in seconds).",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--loops_if_rand", type=int, default=500, help="The total runs for evaluation."
 | |
|     )
 | |
|     # log
 | |
|     parser.add_argument(
 | |
|         "--save_dir",
 | |
|         type=str,
 | |
|         default="./output/search",
 | |
|         help="Folder to save checkpoints and log.",
 | |
|     )
 | |
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     api = create(None, args.search_space, fast_mode=True, verbose=False)
 | |
| 
 | |
|     args.save_dir = os.path.join(
 | |
|         "{:}-{:}".format(args.save_dir, args.search_space),
 | |
|         "{:}-T{:}".format(args.dataset, args.time_budget),
 | |
|         "RANDOM",
 | |
|     )
 | |
|     print("save-dir : {:}".format(args.save_dir))
 | |
| 
 | |
|     if args.rand_seed < 0:
 | |
|         save_dir, all_info = None, collections.OrderedDict()
 | |
|         for i in range(args.loops_if_rand):
 | |
|             print("{:} : {:03d}/{:03d}".format(time_string(), i, args.loops_if_rand))
 | |
|             args.rand_seed = random.randint(1, 100000)
 | |
|             save_dir, all_archs, all_total_times = main(args, api)
 | |
|             all_info[i] = {"all_archs": all_archs, "all_total_times": all_total_times}
 | |
|         save_path = save_dir / "results.pth"
 | |
|         print("save into {:}".format(save_path))
 | |
|         torch.save(all_info, save_path)
 | |
|     else:
 | |
|         main(args, api)
 |