307 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			307 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
 | |
| ##################################################################
 | |
| # Regularized Evolution for Image Classifier Architecture Search #
 | |
| ##################################################################
 | |
| # python ./exps/NATS-algos/regularized_ea.py --dataset cifar10 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
 | |
| # python ./exps/NATS-algos/regularized_ea.py --dataset cifar100 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
 | |
| # python ./exps/NATS-algos/regularized_ea.py --dataset ImageNet16-120 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
 | |
| # python ./exps/NATS-algos/regularized_ea.py --dataset cifar10 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
 | |
| # python ./exps/NATS-algos/regularized_ea.py --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
 | |
| # python ./exps/NATS-algos/regularized_ea.py --dataset ImageNet16-120 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
 | |
| # python ./exps/NATS-algos/regularized_ea.py  --dataset ${dataset} --search_space ${search_space} --time_budget ${time_budget} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --use_proxy 0
 | |
| ##################################################################
 | |
| import os, sys, time, glob, random, argparse
 | |
| import numpy as np, collections
 | |
| from copy import deepcopy
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from pathlib import Path
 | |
| 
 | |
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
 | |
| if str(lib_dir) not in sys.path:
 | |
|     sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import load_config, dict2config, configure2str
 | |
| from datasets import get_datasets, SearchDataset
 | |
| from procedures import (
 | |
|     prepare_seed,
 | |
|     prepare_logger,
 | |
|     save_checkpoint,
 | |
|     copy_checkpoint,
 | |
|     get_optim_scheduler,
 | |
| )
 | |
| from utils import get_model_infos, obtain_accuracy
 | |
| from log_utils import AverageMeter, time_string, convert_secs2time
 | |
| from models import CellStructure, get_search_spaces
 | |
| from nats_bench import create
 | |
| 
 | |
| 
 | |
| class Model(object):
 | |
|     def __init__(self):
 | |
|         self.arch = None
 | |
|         self.accuracy = None
 | |
| 
 | |
|     def __str__(self):
 | |
|         """Prints a readable version of this bitstring."""
 | |
|         return "{:}".format(self.arch)
 | |
| 
 | |
| 
 | |
| def random_topology_func(op_names, max_nodes=4):
 | |
|     # Return a random architecture
 | |
|     def random_architecture():
 | |
|         genotypes = []
 | |
|         for i in range(1, max_nodes):
 | |
|             xlist = []
 | |
|             for j in range(i):
 | |
|                 node_str = "{:}<-{:}".format(i, j)
 | |
|                 op_name = random.choice(op_names)
 | |
|                 xlist.append((op_name, j))
 | |
|             genotypes.append(tuple(xlist))
 | |
|         return CellStructure(genotypes)
 | |
| 
 | |
|     return random_architecture
 | |
| 
 | |
| 
 | |
| def random_size_func(info):
 | |
|     # Return a random architecture
 | |
|     def random_architecture():
 | |
|         channels = []
 | |
|         for i in range(info["numbers"]):
 | |
|             channels.append(str(random.choice(info["candidates"])))
 | |
|         return ":".join(channels)
 | |
| 
 | |
|     return random_architecture
 | |
| 
 | |
| 
 | |
| def mutate_topology_func(op_names):
 | |
|     """Computes the architecture for a child of the given parent architecture.
 | |
|     The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another.
 | |
|     """
 | |
| 
 | |
|     def mutate_topology_func(parent_arch):
 | |
|         child_arch = deepcopy(parent_arch)
 | |
|         node_id = random.randint(0, len(child_arch.nodes) - 1)
 | |
|         node_info = list(child_arch.nodes[node_id])
 | |
|         snode_id = random.randint(0, len(node_info) - 1)
 | |
|         xop = random.choice(op_names)
 | |
|         while xop == node_info[snode_id][0]:
 | |
|             xop = random.choice(op_names)
 | |
|         node_info[snode_id] = (xop, node_info[snode_id][1])
 | |
|         child_arch.nodes[node_id] = tuple(node_info)
 | |
|         return child_arch
 | |
| 
 | |
|     return mutate_topology_func
 | |
| 
 | |
| 
 | |
| def mutate_size_func(info):
 | |
|     """Computes the architecture for a child of the given parent architecture.
 | |
|     The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another.
 | |
|     """
 | |
| 
 | |
|     def mutate_size_func(parent_arch):
 | |
|         child_arch = deepcopy(parent_arch)
 | |
|         child_arch = child_arch.split(":")
 | |
|         index = random.randint(0, len(child_arch) - 1)
 | |
|         child_arch[index] = str(random.choice(info["candidates"]))
 | |
|         return ":".join(child_arch)
 | |
| 
 | |
|     return mutate_size_func
 | |
| 
 | |
| 
 | |
| def regularized_evolution(
 | |
|     cycles,
 | |
|     population_size,
 | |
|     sample_size,
 | |
|     time_budget,
 | |
|     random_arch,
 | |
|     mutate_arch,
 | |
|     api,
 | |
|     use_proxy,
 | |
|     dataset,
 | |
| ):
 | |
|     """Algorithm for regularized evolution (i.e. aging evolution).
 | |
| 
 | |
|     Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image
 | |
|     Classifier Architecture Search".
 | |
| 
 | |
|     Args:
 | |
|       cycles: the number of cycles the algorithm should run for.
 | |
|       population_size: the number of individuals to keep in the population.
 | |
|       sample_size: the number of individuals that should participate in each tournament.
 | |
|       time_budget: the upper bound of searching cost
 | |
| 
 | |
|     Returns:
 | |
|       history: a list of `Model` instances, representing all the models computed
 | |
|           during the evolution experiment.
 | |
|     """
 | |
|     population = collections.deque()
 | |
|     api.reset_time()
 | |
|     history, total_time_cost = (
 | |
|         [],
 | |
|         [],
 | |
|     )  # Not used by the algorithm, only used to report results.
 | |
|     current_best_index = []
 | |
|     # Initialize the population with random models.
 | |
|     while len(population) < population_size:
 | |
|         model = Model()
 | |
|         model.arch = random_arch()
 | |
|         model.accuracy, _, _, total_cost = api.simulate_train_eval(
 | |
|             model.arch, dataset, hp="12" if use_proxy else api.full_train_epochs
 | |
|         )
 | |
|         # Append the info
 | |
|         population.append(model)
 | |
|         history.append((model.accuracy, model.arch))
 | |
|         total_time_cost.append(total_cost)
 | |
|         current_best_index.append(
 | |
|             api.query_index_by_arch(max(history, key=lambda x: x[0])[1])
 | |
|         )
 | |
| 
 | |
|     # Carry out evolution in cycles. Each cycle produces a model and removes another.
 | |
|     while total_time_cost[-1] < time_budget:
 | |
|         # Sample randomly chosen models from the current population.
 | |
|         start_time, sample = time.time(), []
 | |
|         while len(sample) < sample_size:
 | |
|             # Inefficient, but written this way for clarity. In the case of neural
 | |
|             # nets, the efficiency of this line is irrelevant because training neural
 | |
|             # nets is the rate-determining step.
 | |
|             candidate = random.choice(list(population))
 | |
|             sample.append(candidate)
 | |
| 
 | |
|         # The parent is the best model in the sample.
 | |
|         parent = max(sample, key=lambda i: i.accuracy)
 | |
| 
 | |
|         # Create the child model and store it.
 | |
|         child = Model()
 | |
|         child.arch = mutate_arch(parent.arch)
 | |
|         child.accuracy, _, _, total_cost = api.simulate_train_eval(
 | |
|             child.arch, dataset, hp="12" if use_proxy else api.full_train_epochs
 | |
|         )
 | |
|         # Append the info
 | |
|         population.append(child)
 | |
|         history.append((child.accuracy, child.arch))
 | |
|         current_best_index.append(
 | |
|             api.query_index_by_arch(max(history, key=lambda x: x[0])[1])
 | |
|         )
 | |
|         total_time_cost.append(total_cost)
 | |
| 
 | |
|         # Remove the oldest model.
 | |
|         population.popleft()
 | |
|     return history, current_best_index, total_time_cost
 | |
| 
 | |
| 
 | |
| def main(xargs, api):
 | |
|     torch.set_num_threads(4)
 | |
|     prepare_seed(xargs.rand_seed)
 | |
|     logger = prepare_logger(args)
 | |
| 
 | |
|     search_space = get_search_spaces(xargs.search_space, "nats-bench")
 | |
|     if xargs.search_space == "tss":
 | |
|         random_arch = random_topology_func(search_space)
 | |
|         mutate_arch = mutate_topology_func(search_space)
 | |
|     else:
 | |
|         random_arch = random_size_func(search_space)
 | |
|         mutate_arch = mutate_size_func(search_space)
 | |
| 
 | |
|     x_start_time = time.time()
 | |
|     logger.log("{:} use api : {:}".format(time_string(), api))
 | |
|     logger.log(
 | |
|         "-" * 30
 | |
|         + " start searching with the time budget of {:} s".format(xargs.time_budget)
 | |
|     )
 | |
|     history, current_best_index, total_times = regularized_evolution(
 | |
|         xargs.ea_cycles,
 | |
|         xargs.ea_population,
 | |
|         xargs.ea_sample_size,
 | |
|         xargs.time_budget,
 | |
|         random_arch,
 | |
|         mutate_arch,
 | |
|         api,
 | |
|         xargs.use_proxy > 0,
 | |
|         xargs.dataset,
 | |
|     )
 | |
|     logger.log(
 | |
|         "{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).".format(
 | |
|             time_string(), len(history), total_times[-1], time.time() - x_start_time
 | |
|         )
 | |
|     )
 | |
|     best_arch = max(history, key=lambda x: x[0])[1]
 | |
|     logger.log("{:} best arch is {:}".format(time_string(), best_arch))
 | |
| 
 | |
|     info = api.query_info_str_by_arch(
 | |
|         best_arch, "200" if xargs.search_space == "tss" else "90"
 | |
|     )
 | |
|     logger.log("{:}".format(info))
 | |
|     logger.log("-" * 100)
 | |
|     logger.close()
 | |
|     return logger.log_dir, current_best_index, total_times
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
 | |
|     parser.add_argument(
 | |
|         "--dataset",
 | |
|         type=str,
 | |
|         choices=["cifar10", "cifar100", "ImageNet16-120"],
 | |
|         help="Choose between Cifar10/100 and ImageNet-16.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--search_space",
 | |
|         type=str,
 | |
|         choices=["tss", "sss"],
 | |
|         help="Choose the search space.",
 | |
|     )
 | |
|     # hyperparameters for REA
 | |
|     parser.add_argument("--ea_cycles", type=int, help="The number of cycles in EA.")
 | |
|     parser.add_argument("--ea_population", type=int, help="The population size in EA.")
 | |
|     parser.add_argument("--ea_sample_size", type=int, help="The sample size in EA.")
 | |
|     parser.add_argument(
 | |
|         "--time_budget",
 | |
|         type=int,
 | |
|         default=20000,
 | |
|         help="The total time cost budge for searching (in seconds).",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--use_proxy",
 | |
|         type=int,
 | |
|         default=1,
 | |
|         help="Whether to use the proxy (H0) task or not.",
 | |
|     )
 | |
|     #
 | |
|     parser.add_argument(
 | |
|         "--loops_if_rand", type=int, default=500, help="The total runs for evaluation."
 | |
|     )
 | |
|     # log
 | |
|     parser.add_argument(
 | |
|         "--save_dir",
 | |
|         type=str,
 | |
|         default="./output/search",
 | |
|         help="Folder to save checkpoints and log.",
 | |
|     )
 | |
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     api = create(None, args.search_space, fast_mode=True, verbose=False)
 | |
| 
 | |
|     args.save_dir = os.path.join(
 | |
|         "{:}-{:}".format(args.save_dir, args.search_space),
 | |
|         "{:}-T{:}{:}".format(
 | |
|             args.dataset, args.time_budget, "" if args.use_proxy > 0 else "-FULL"
 | |
|         ),
 | |
|         "R-EA-SS{:}".format(args.ea_sample_size),
 | |
|     )
 | |
|     print("save-dir : {:}".format(args.save_dir))
 | |
|     print("xargs : {:}".format(args))
 | |
| 
 | |
|     if args.rand_seed < 0:
 | |
|         save_dir, all_info = None, collections.OrderedDict()
 | |
|         for i in range(args.loops_if_rand):
 | |
|             print("{:} : {:03d}/{:03d}".format(time_string(), i, args.loops_if_rand))
 | |
|             args.rand_seed = random.randint(1, 100000)
 | |
|             save_dir, all_archs, all_total_times = main(args, api)
 | |
|             all_info[i] = {"all_archs": all_archs, "all_total_times": all_total_times}
 | |
|         save_path = save_dir / "results.pth"
 | |
|         print("save into {:}".format(save_path))
 | |
|         torch.save(all_info, save_path)
 | |
|     else:
 | |
|         main(args, api)
 |