873 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			873 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
 | |
| ######################################################################################
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v1 --rand_seed 777
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --drop_path_rate 0.3
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1
 | |
| ####
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v2 --rand_seed 777
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2
 | |
| ####
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo gdas --rand_seed 777
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo gdas
 | |
| ####
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo setn --rand_seed 777
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo setn
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo setn
 | |
| ####
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo random --rand_seed 777
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo random
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo random
 | |
| ####
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777
 | |
| # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777
 | |
| ######################################################################################
 | |
| import os, sys, time, random, argparse
 | |
| import numpy as np
 | |
| from copy import deepcopy
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from pathlib import Path
 | |
| 
 | |
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
 | |
| if str(lib_dir) not in sys.path:
 | |
|     sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import load_config, dict2config, configure2str
 | |
| from datasets import get_datasets, get_nas_search_loaders
 | |
| from procedures import (
 | |
|     prepare_seed,
 | |
|     prepare_logger,
 | |
|     save_checkpoint,
 | |
|     copy_checkpoint,
 | |
|     get_optim_scheduler,
 | |
| )
 | |
| from utils import count_parameters_in_MB, obtain_accuracy
 | |
| from log_utils import AverageMeter, time_string, convert_secs2time
 | |
| from models import get_cell_based_tiny_net, get_search_spaces
 | |
| from nats_bench import create
 | |
| 
 | |
| 
 | |
| # The following three functions are used for DARTS-V2
 | |
| def _concat(xs):
 | |
|     return torch.cat([x.view(-1) for x in xs])
 | |
| 
 | |
| 
 | |
| def _hessian_vector_product(
 | |
|     vector, network, criterion, base_inputs, base_targets, r=1e-2
 | |
| ):
 | |
|     R = r / _concat(vector).norm()
 | |
|     for p, v in zip(network.weights, vector):
 | |
|         p.data.add_(R, v)
 | |
|     _, logits = network(base_inputs)
 | |
|     loss = criterion(logits, base_targets)
 | |
|     grads_p = torch.autograd.grad(loss, network.alphas)
 | |
| 
 | |
|     for p, v in zip(network.weights, vector):
 | |
|         p.data.sub_(2 * R, v)
 | |
|     _, logits = network(base_inputs)
 | |
|     loss = criterion(logits, base_targets)
 | |
|     grads_n = torch.autograd.grad(loss, network.alphas)
 | |
| 
 | |
|     for p, v in zip(network.weights, vector):
 | |
|         p.data.add_(R, v)
 | |
|     return [(x - y).div_(2 * R) for x, y in zip(grads_p, grads_n)]
 | |
| 
 | |
| 
 | |
| def backward_step_unrolled(
 | |
|     network,
 | |
|     criterion,
 | |
|     base_inputs,
 | |
|     base_targets,
 | |
|     w_optimizer,
 | |
|     arch_inputs,
 | |
|     arch_targets,
 | |
| ):
 | |
|     # _compute_unrolled_model
 | |
|     _, logits = network(base_inputs)
 | |
|     loss = criterion(logits, base_targets)
 | |
|     LR, WD, momentum = (
 | |
|         w_optimizer.param_groups[0]["lr"],
 | |
|         w_optimizer.param_groups[0]["weight_decay"],
 | |
|         w_optimizer.param_groups[0]["momentum"],
 | |
|     )
 | |
|     with torch.no_grad():
 | |
|         theta = _concat(network.weights)
 | |
|         try:
 | |
|             moment = _concat(
 | |
|                 w_optimizer.state[v]["momentum_buffer"] for v in network.weights
 | |
|             )
 | |
|             moment = moment.mul_(momentum)
 | |
|         except:
 | |
|             moment = torch.zeros_like(theta)
 | |
|         dtheta = _concat(torch.autograd.grad(loss, network.weights)) + WD * theta
 | |
|         params = theta.sub(LR, moment + dtheta)
 | |
|     unrolled_model = deepcopy(network)
 | |
|     model_dict = unrolled_model.state_dict()
 | |
|     new_params, offset = {}, 0
 | |
|     for k, v in network.named_parameters():
 | |
|         if "arch_parameters" in k:
 | |
|             continue
 | |
|         v_length = np.prod(v.size())
 | |
|         new_params[k] = params[offset : offset + v_length].view(v.size())
 | |
|         offset += v_length
 | |
|     model_dict.update(new_params)
 | |
|     unrolled_model.load_state_dict(model_dict)
 | |
| 
 | |
|     unrolled_model.zero_grad()
 | |
|     _, unrolled_logits = unrolled_model(arch_inputs)
 | |
|     unrolled_loss = criterion(unrolled_logits, arch_targets)
 | |
|     unrolled_loss.backward()
 | |
| 
 | |
|     dalpha = unrolled_model.arch_parameters.grad
 | |
|     vector = [v.grad.data for v in unrolled_model.weights]
 | |
|     [implicit_grads] = _hessian_vector_product(
 | |
|         vector, network, criterion, base_inputs, base_targets
 | |
|     )
 | |
| 
 | |
|     dalpha.data.sub_(LR, implicit_grads.data)
 | |
| 
 | |
|     if network.arch_parameters.grad is None:
 | |
|         network.arch_parameters.grad = deepcopy(dalpha)
 | |
|     else:
 | |
|         network.arch_parameters.grad.data.copy_(dalpha.data)
 | |
|     return unrolled_loss.detach(), unrolled_logits.detach()
 | |
| 
 | |
| 
 | |
| def search_func(
 | |
|     xloader,
 | |
|     network,
 | |
|     criterion,
 | |
|     scheduler,
 | |
|     w_optimizer,
 | |
|     a_optimizer,
 | |
|     epoch_str,
 | |
|     print_freq,
 | |
|     algo,
 | |
|     logger,
 | |
| ):
 | |
|     data_time, batch_time = AverageMeter(), AverageMeter()
 | |
|     base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
 | |
|     arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
 | |
|     end = time.time()
 | |
|     network.train()
 | |
|     for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(
 | |
|         xloader
 | |
|     ):
 | |
|         scheduler.update(None, 1.0 * step / len(xloader))
 | |
|         base_inputs = base_inputs.cuda(non_blocking=True)
 | |
|         arch_inputs = arch_inputs.cuda(non_blocking=True)
 | |
|         base_targets = base_targets.cuda(non_blocking=True)
 | |
|         arch_targets = arch_targets.cuda(non_blocking=True)
 | |
|         # measure data loading time
 | |
|         data_time.update(time.time() - end)
 | |
| 
 | |
|         # Update the weights
 | |
|         if algo == "setn":
 | |
|             sampled_arch = network.dync_genotype(True)
 | |
|             network.set_cal_mode("dynamic", sampled_arch)
 | |
|         elif algo == "gdas":
 | |
|             network.set_cal_mode("gdas", None)
 | |
|         elif algo.startswith("darts"):
 | |
|             network.set_cal_mode("joint", None)
 | |
|         elif algo == "random":
 | |
|             network.set_cal_mode("urs", None)
 | |
|         elif algo == "enas":
 | |
|             with torch.no_grad():
 | |
|                 network.controller.eval()
 | |
|                 _, _, sampled_arch = network.controller()
 | |
|             network.set_cal_mode("dynamic", sampled_arch)
 | |
|         else:
 | |
|             raise ValueError("Invalid algo name : {:}".format(algo))
 | |
| 
 | |
|         network.zero_grad()
 | |
|         _, logits = network(base_inputs)
 | |
|         base_loss = criterion(logits, base_targets)
 | |
|         base_loss.backward()
 | |
|         w_optimizer.step()
 | |
|         # record
 | |
|         base_prec1, base_prec5 = obtain_accuracy(
 | |
|             logits.data, base_targets.data, topk=(1, 5)
 | |
|         )
 | |
|         base_losses.update(base_loss.item(), base_inputs.size(0))
 | |
|         base_top1.update(base_prec1.item(), base_inputs.size(0))
 | |
|         base_top5.update(base_prec5.item(), base_inputs.size(0))
 | |
| 
 | |
|         # update the architecture-weight
 | |
|         if algo == "setn":
 | |
|             network.set_cal_mode("joint")
 | |
|         elif algo == "gdas":
 | |
|             network.set_cal_mode("gdas", None)
 | |
|         elif algo.startswith("darts"):
 | |
|             network.set_cal_mode("joint", None)
 | |
|         elif algo == "random":
 | |
|             network.set_cal_mode("urs", None)
 | |
|         elif algo != "enas":
 | |
|             raise ValueError("Invalid algo name : {:}".format(algo))
 | |
|         network.zero_grad()
 | |
|         if algo == "darts-v2":
 | |
|             arch_loss, logits = backward_step_unrolled(
 | |
|                 network,
 | |
|                 criterion,
 | |
|                 base_inputs,
 | |
|                 base_targets,
 | |
|                 w_optimizer,
 | |
|                 arch_inputs,
 | |
|                 arch_targets,
 | |
|             )
 | |
|             a_optimizer.step()
 | |
|         elif algo == "random" or algo == "enas":
 | |
|             with torch.no_grad():
 | |
|                 _, logits = network(arch_inputs)
 | |
|                 arch_loss = criterion(logits, arch_targets)
 | |
|         else:
 | |
|             _, logits = network(arch_inputs)
 | |
|             arch_loss = criterion(logits, arch_targets)
 | |
|             arch_loss.backward()
 | |
|             a_optimizer.step()
 | |
|         # record
 | |
|         arch_prec1, arch_prec5 = obtain_accuracy(
 | |
|             logits.data, arch_targets.data, topk=(1, 5)
 | |
|         )
 | |
|         arch_losses.update(arch_loss.item(), arch_inputs.size(0))
 | |
|         arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
 | |
|         arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
 | |
| 
 | |
|         # measure elapsed time
 | |
|         batch_time.update(time.time() - end)
 | |
|         end = time.time()
 | |
| 
 | |
|         if step % print_freq == 0 or step + 1 == len(xloader):
 | |
|             Sstr = (
 | |
|                 "*SEARCH* "
 | |
|                 + time_string()
 | |
|                 + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader))
 | |
|             )
 | |
|             Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
 | |
|                 batch_time=batch_time, data_time=data_time
 | |
|             )
 | |
|             Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
 | |
|                 loss=base_losses, top1=base_top1, top5=base_top5
 | |
|             )
 | |
|             Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format(
 | |
|                 loss=arch_losses, top1=arch_top1, top5=arch_top5
 | |
|             )
 | |
|             logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr)
 | |
|     return (
 | |
|         base_losses.avg,
 | |
|         base_top1.avg,
 | |
|         base_top5.avg,
 | |
|         arch_losses.avg,
 | |
|         arch_top1.avg,
 | |
|         arch_top5.avg,
 | |
|     )
 | |
| 
 | |
| 
 | |
| def train_controller(
 | |
|     xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger
 | |
| ):
 | |
|     # config. (containing some necessary arg)
 | |
|     #   baseline: The baseline score (i.e. average val_acc) from the previous epoch
 | |
|     data_time, batch_time = AverageMeter(), AverageMeter()
 | |
|     (
 | |
|         GradnormMeter,
 | |
|         LossMeter,
 | |
|         ValAccMeter,
 | |
|         EntropyMeter,
 | |
|         BaselineMeter,
 | |
|         RewardMeter,
 | |
|         xend,
 | |
|     ) = (
 | |
|         AverageMeter(),
 | |
|         AverageMeter(),
 | |
|         AverageMeter(),
 | |
|         AverageMeter(),
 | |
|         AverageMeter(),
 | |
|         AverageMeter(),
 | |
|         time.time(),
 | |
|     )
 | |
| 
 | |
|     controller_num_aggregate = 20
 | |
|     controller_train_steps = 50
 | |
|     controller_bl_dec = 0.99
 | |
|     controller_entropy_weight = 0.0001
 | |
| 
 | |
|     network.eval()
 | |
|     network.controller.train()
 | |
|     network.controller.zero_grad()
 | |
|     loader_iter = iter(xloader)
 | |
|     for step in range(controller_train_steps * controller_num_aggregate):
 | |
|         try:
 | |
|             inputs, targets = next(loader_iter)
 | |
|         except:
 | |
|             loader_iter = iter(xloader)
 | |
|             inputs, targets = next(loader_iter)
 | |
|         inputs = inputs.cuda(non_blocking=True)
 | |
|         targets = targets.cuda(non_blocking=True)
 | |
|         # measure data loading time
 | |
|         data_time.update(time.time() - xend)
 | |
| 
 | |
|         log_prob, entropy, sampled_arch = network.controller()
 | |
|         with torch.no_grad():
 | |
|             network.set_cal_mode("dynamic", sampled_arch)
 | |
|             _, logits = network(inputs)
 | |
|             val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
 | |
|             val_top1 = val_top1.view(-1) / 100
 | |
|         reward = val_top1 + controller_entropy_weight * entropy
 | |
|         if prev_baseline is None:
 | |
|             baseline = val_top1
 | |
|         else:
 | |
|             baseline = prev_baseline - (1 - controller_bl_dec) * (
 | |
|                 prev_baseline - reward
 | |
|             )
 | |
| 
 | |
|         loss = -1 * log_prob * (reward - baseline)
 | |
| 
 | |
|         # account
 | |
|         RewardMeter.update(reward.item())
 | |
|         BaselineMeter.update(baseline.item())
 | |
|         ValAccMeter.update(val_top1.item() * 100)
 | |
|         LossMeter.update(loss.item())
 | |
|         EntropyMeter.update(entropy.item())
 | |
| 
 | |
|         # Average gradient over controller_num_aggregate samples
 | |
|         loss = loss / controller_num_aggregate
 | |
|         loss.backward(retain_graph=True)
 | |
| 
 | |
|         # measure elapsed time
 | |
|         batch_time.update(time.time() - xend)
 | |
|         xend = time.time()
 | |
|         if (step + 1) % controller_num_aggregate == 0:
 | |
|             grad_norm = torch.nn.utils.clip_grad_norm_(
 | |
|                 network.controller.parameters(), 5.0
 | |
|             )
 | |
|             GradnormMeter.update(grad_norm)
 | |
|             optimizer.step()
 | |
|             network.controller.zero_grad()
 | |
| 
 | |
|         if step % print_freq == 0:
 | |
|             Sstr = (
 | |
|                 "*Train-Controller* "
 | |
|                 + time_string()
 | |
|                 + " [{:}][{:03d}/{:03d}]".format(
 | |
|                     epoch_str, step, controller_train_steps * controller_num_aggregate
 | |
|                 )
 | |
|             )
 | |
|             Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
 | |
|                 batch_time=batch_time, data_time=data_time
 | |
|             )
 | |
|             Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})".format(
 | |
|                 loss=LossMeter,
 | |
|                 top1=ValAccMeter,
 | |
|                 reward=RewardMeter,
 | |
|                 basel=BaselineMeter,
 | |
|             )
 | |
|             Estr = "Entropy={:.4f} ({:.4f})".format(EntropyMeter.val, EntropyMeter.avg)
 | |
|             logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Estr)
 | |
| 
 | |
|     return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg
 | |
| 
 | |
| 
 | |
| def get_best_arch(xloader, network, n_samples, algo):
 | |
|     with torch.no_grad():
 | |
|         network.eval()
 | |
|         if algo == "random":
 | |
|             archs, valid_accs = network.return_topK(n_samples, True), []
 | |
|         elif algo == "setn":
 | |
|             archs, valid_accs = network.return_topK(n_samples, False), []
 | |
|         elif algo.startswith("darts") or algo == "gdas":
 | |
|             arch = network.genotype
 | |
|             archs, valid_accs = [arch], []
 | |
|         elif algo == "enas":
 | |
|             archs, valid_accs = [], []
 | |
|             for _ in range(n_samples):
 | |
|                 _, _, sampled_arch = network.controller()
 | |
|                 archs.append(sampled_arch)
 | |
|         else:
 | |
|             raise ValueError("Invalid algorithm name : {:}".format(algo))
 | |
|         loader_iter = iter(xloader)
 | |
|         for i, sampled_arch in enumerate(archs):
 | |
|             network.set_cal_mode("dynamic", sampled_arch)
 | |
|             try:
 | |
|                 inputs, targets = next(loader_iter)
 | |
|             except:
 | |
|                 loader_iter = iter(xloader)
 | |
|                 inputs, targets = next(loader_iter)
 | |
|             _, logits = network(inputs.cuda(non_blocking=True))
 | |
|             val_top1, val_top5 = obtain_accuracy(
 | |
|                 logits.cpu().data, targets.data, topk=(1, 5)
 | |
|             )
 | |
|             valid_accs.append(val_top1.item())
 | |
|         best_idx = np.argmax(valid_accs)
 | |
|         best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
 | |
|         return best_arch, best_valid_acc
 | |
| 
 | |
| 
 | |
| def valid_func(xloader, network, criterion, algo, logger):
 | |
|     data_time, batch_time = AverageMeter(), AverageMeter()
 | |
|     arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
 | |
|     end = time.time()
 | |
|     with torch.no_grad():
 | |
|         network.eval()
 | |
|         for step, (arch_inputs, arch_targets) in enumerate(xloader):
 | |
|             arch_targets = arch_targets.cuda(non_blocking=True)
 | |
|             # measure data loading time
 | |
|             data_time.update(time.time() - end)
 | |
|             # prediction
 | |
|             _, logits = network(arch_inputs.cuda(non_blocking=True))
 | |
|             arch_loss = criterion(logits, arch_targets)
 | |
|             # record
 | |
|             arch_prec1, arch_prec5 = obtain_accuracy(
 | |
|                 logits.data, arch_targets.data, topk=(1, 5)
 | |
|             )
 | |
|             arch_losses.update(arch_loss.item(), arch_inputs.size(0))
 | |
|             arch_top1.update(arch_prec1.item(), arch_inputs.size(0))
 | |
|             arch_top5.update(arch_prec5.item(), arch_inputs.size(0))
 | |
|             # measure elapsed time
 | |
|             batch_time.update(time.time() - end)
 | |
|             end = time.time()
 | |
|     return arch_losses.avg, arch_top1.avg, arch_top5.avg
 | |
| 
 | |
| 
 | |
| def main(xargs):
 | |
|     assert torch.cuda.is_available(), "CUDA is not available."
 | |
|     torch.backends.cudnn.enabled = True
 | |
|     torch.backends.cudnn.benchmark = False
 | |
|     torch.backends.cudnn.deterministic = True
 | |
|     torch.set_num_threads(xargs.workers)
 | |
|     prepare_seed(xargs.rand_seed)
 | |
|     logger = prepare_logger(args)
 | |
| 
 | |
|     train_data, valid_data, xshape, class_num = get_datasets(
 | |
|         xargs.dataset, xargs.data_path, -1
 | |
|     )
 | |
|     if xargs.overwite_epochs is None:
 | |
|         extra_info = {"class_num": class_num, "xshape": xshape}
 | |
|     else:
 | |
|         extra_info = {
 | |
|             "class_num": class_num,
 | |
|             "xshape": xshape,
 | |
|             "epochs": xargs.overwite_epochs,
 | |
|         }
 | |
|     config = load_config(xargs.config_path, extra_info, logger)
 | |
|     search_loader, train_loader, valid_loader = get_nas_search_loaders(
 | |
|         train_data,
 | |
|         valid_data,
 | |
|         xargs.dataset,
 | |
|         "configs/nas-benchmark/",
 | |
|         (config.batch_size, config.test_batch_size),
 | |
|         xargs.workers,
 | |
|     )
 | |
|     logger.log(
 | |
|         "||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
 | |
|             xargs.dataset, len(search_loader), len(valid_loader), config.batch_size
 | |
|         )
 | |
|     )
 | |
|     logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
 | |
| 
 | |
|     search_space = get_search_spaces(xargs.search_space, "nats-bench")
 | |
| 
 | |
|     model_config = dict2config(
 | |
|         dict(
 | |
|             name="generic",
 | |
|             C=xargs.channel,
 | |
|             N=xargs.num_cells,
 | |
|             max_nodes=xargs.max_nodes,
 | |
|             num_classes=class_num,
 | |
|             space=search_space,
 | |
|             affine=bool(xargs.affine),
 | |
|             track_running_stats=bool(xargs.track_running_stats),
 | |
|         ),
 | |
|         None,
 | |
|     )
 | |
|     logger.log("search space : {:}".format(search_space))
 | |
|     logger.log("model config : {:}".format(model_config))
 | |
|     search_model = get_cell_based_tiny_net(model_config)
 | |
|     search_model.set_algo(xargs.algo)
 | |
|     logger.log("{:}".format(search_model))
 | |
| 
 | |
|     w_optimizer, w_scheduler, criterion = get_optim_scheduler(
 | |
|         search_model.weights, config
 | |
|     )
 | |
|     a_optimizer = torch.optim.Adam(
 | |
|         search_model.alphas,
 | |
|         lr=xargs.arch_learning_rate,
 | |
|         betas=(0.5, 0.999),
 | |
|         weight_decay=xargs.arch_weight_decay,
 | |
|         eps=xargs.arch_eps,
 | |
|     )
 | |
|     logger.log("w-optimizer : {:}".format(w_optimizer))
 | |
|     logger.log("a-optimizer : {:}".format(a_optimizer))
 | |
|     logger.log("w-scheduler : {:}".format(w_scheduler))
 | |
|     logger.log("criterion   : {:}".format(criterion))
 | |
|     params = count_parameters_in_MB(search_model)
 | |
|     logger.log("The parameters of the search model = {:.2f} MB".format(params))
 | |
|     logger.log("search-space : {:}".format(search_space))
 | |
|     if bool(xargs.use_api):
 | |
|         api = create(None, "topology", fast_mode=True, verbose=False)
 | |
|     else:
 | |
|         api = None
 | |
|     logger.log("{:} create API = {:} done".format(time_string(), api))
 | |
| 
 | |
|     last_info, model_base_path, model_best_path = (
 | |
|         logger.path("info"),
 | |
|         logger.path("model"),
 | |
|         logger.path("best"),
 | |
|     )
 | |
|     network, criterion = search_model.cuda(), criterion.cuda()  # use a single GPU
 | |
| 
 | |
|     last_info, model_base_path, model_best_path = (
 | |
|         logger.path("info"),
 | |
|         logger.path("model"),
 | |
|         logger.path("best"),
 | |
|     )
 | |
| 
 | |
|     if last_info.exists():  # automatically resume from previous checkpoint
 | |
|         logger.log(
 | |
|             "=> loading checkpoint of the last-info '{:}' start".format(last_info)
 | |
|         )
 | |
|         last_info = torch.load(last_info)
 | |
|         start_epoch = last_info["epoch"]
 | |
|         checkpoint = torch.load(last_info["last_checkpoint"])
 | |
|         genotypes = checkpoint["genotypes"]
 | |
|         baseline = checkpoint["baseline"]
 | |
|         valid_accuracies = checkpoint["valid_accuracies"]
 | |
|         search_model.load_state_dict(checkpoint["search_model"])
 | |
|         w_scheduler.load_state_dict(checkpoint["w_scheduler"])
 | |
|         w_optimizer.load_state_dict(checkpoint["w_optimizer"])
 | |
|         a_optimizer.load_state_dict(checkpoint["a_optimizer"])
 | |
|         logger.log(
 | |
|             "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(
 | |
|                 last_info, start_epoch
 | |
|             )
 | |
|         )
 | |
|     else:
 | |
|         logger.log("=> do not find the last-info file : {:}".format(last_info))
 | |
|         start_epoch, valid_accuracies, genotypes = (
 | |
|             0,
 | |
|             {"best": -1},
 | |
|             {-1: network.return_topK(1, True)[0]},
 | |
|         )
 | |
|         baseline = None
 | |
| 
 | |
|     # start training
 | |
|     start_time, search_time, epoch_time, total_epoch = (
 | |
|         time.time(),
 | |
|         AverageMeter(),
 | |
|         AverageMeter(),
 | |
|         config.epochs + config.warmup,
 | |
|     )
 | |
|     for epoch in range(start_epoch, total_epoch):
 | |
|         w_scheduler.update(epoch, 0.0)
 | |
|         need_time = "Time Left: {:}".format(
 | |
|             convert_secs2time(epoch_time.val * (total_epoch - epoch), True)
 | |
|         )
 | |
|         epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch)
 | |
|         logger.log(
 | |
|             "\n[Search the {:}-th epoch] {:}, LR={:}".format(
 | |
|                 epoch_str, need_time, min(w_scheduler.get_lr())
 | |
|             )
 | |
|         )
 | |
| 
 | |
|         network.set_drop_path(float(epoch + 1) / total_epoch, xargs.drop_path_rate)
 | |
|         if xargs.algo == "gdas":
 | |
|             network.set_tau(
 | |
|                 xargs.tau_max
 | |
|                 - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1)
 | |
|             )
 | |
|             logger.log(
 | |
|                 "[RESET tau as : {:} and drop_path as {:}]".format(
 | |
|                     network.tau, network.drop_path
 | |
|                 )
 | |
|             )
 | |
|         (
 | |
|             search_w_loss,
 | |
|             search_w_top1,
 | |
|             search_w_top5,
 | |
|             search_a_loss,
 | |
|             search_a_top1,
 | |
|             search_a_top5,
 | |
|         ) = search_func(
 | |
|             search_loader,
 | |
|             network,
 | |
|             criterion,
 | |
|             w_scheduler,
 | |
|             w_optimizer,
 | |
|             a_optimizer,
 | |
|             epoch_str,
 | |
|             xargs.print_freq,
 | |
|             xargs.algo,
 | |
|             logger,
 | |
|         )
 | |
|         search_time.update(time.time() - start_time)
 | |
|         logger.log(
 | |
|             "[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format(
 | |
|                 epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum
 | |
|             )
 | |
|         )
 | |
|         logger.log(
 | |
|             "[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format(
 | |
|                 epoch_str, search_a_loss, search_a_top1, search_a_top5
 | |
|             )
 | |
|         )
 | |
|         if xargs.algo == "enas":
 | |
|             ctl_loss, ctl_acc, baseline, ctl_reward = train_controller(
 | |
|                 valid_loader,
 | |
|                 network,
 | |
|                 criterion,
 | |
|                 a_optimizer,
 | |
|                 baseline,
 | |
|                 epoch_str,
 | |
|                 xargs.print_freq,
 | |
|                 logger,
 | |
|             )
 | |
|             logger.log(
 | |
|                 "[{:}] controller : loss={:}, acc={:}, baseline={:}, reward={:}".format(
 | |
|                     epoch_str, ctl_loss, ctl_acc, baseline, ctl_reward
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|         genotype, temp_accuracy = get_best_arch(
 | |
|             valid_loader, network, xargs.eval_candidate_num, xargs.algo
 | |
|         )
 | |
|         if xargs.algo == "setn" or xargs.algo == "enas":
 | |
|             network.set_cal_mode("dynamic", genotype)
 | |
|         elif xargs.algo == "gdas":
 | |
|             network.set_cal_mode("gdas", None)
 | |
|         elif xargs.algo.startswith("darts"):
 | |
|             network.set_cal_mode("joint", None)
 | |
|         elif xargs.algo == "random":
 | |
|             network.set_cal_mode("urs", None)
 | |
|         else:
 | |
|             raise ValueError("Invalid algorithm name : {:}".format(xargs.algo))
 | |
|         logger.log(
 | |
|             "[{:}] - [get_best_arch] : {:} -> {:}".format(
 | |
|                 epoch_str, genotype, temp_accuracy
 | |
|             )
 | |
|         )
 | |
|         valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
 | |
|             valid_loader, network, criterion, xargs.algo, logger
 | |
|         )
 | |
|         logger.log(
 | |
|             "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}".format(
 | |
|                 epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype
 | |
|             )
 | |
|         )
 | |
|         valid_accuracies[epoch] = valid_a_top1
 | |
| 
 | |
|         genotypes[epoch] = genotype
 | |
|         logger.log(
 | |
|             "<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch])
 | |
|         )
 | |
|         # save checkpoint
 | |
|         save_path = save_checkpoint(
 | |
|             {
 | |
|                 "epoch": epoch + 1,
 | |
|                 "args": deepcopy(xargs),
 | |
|                 "baseline": baseline,
 | |
|                 "search_model": search_model.state_dict(),
 | |
|                 "w_optimizer": w_optimizer.state_dict(),
 | |
|                 "a_optimizer": a_optimizer.state_dict(),
 | |
|                 "w_scheduler": w_scheduler.state_dict(),
 | |
|                 "genotypes": genotypes,
 | |
|                 "valid_accuracies": valid_accuracies,
 | |
|             },
 | |
|             model_base_path,
 | |
|             logger,
 | |
|         )
 | |
|         last_info = save_checkpoint(
 | |
|             {
 | |
|                 "epoch": epoch + 1,
 | |
|                 "args": deepcopy(args),
 | |
|                 "last_checkpoint": save_path,
 | |
|             },
 | |
|             logger.path("info"),
 | |
|             logger,
 | |
|         )
 | |
|         with torch.no_grad():
 | |
|             logger.log("{:}".format(search_model.show_alphas()))
 | |
|         if api is not None:
 | |
|             logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200")))
 | |
|         # measure elapsed time
 | |
|         epoch_time.update(time.time() - start_time)
 | |
|         start_time = time.time()
 | |
| 
 | |
|     # the final post procedure : count the time
 | |
|     start_time = time.time()
 | |
|     genotype, temp_accuracy = get_best_arch(
 | |
|         valid_loader, network, xargs.eval_candidate_num, xargs.algo
 | |
|     )
 | |
|     if xargs.algo == "setn" or xargs.algo == "enas":
 | |
|         network.set_cal_mode("dynamic", genotype)
 | |
|     elif xargs.algo == "gdas":
 | |
|         network.set_cal_mode("gdas", None)
 | |
|     elif xargs.algo.startswith("darts"):
 | |
|         network.set_cal_mode("joint", None)
 | |
|     elif xargs.algo == "random":
 | |
|         network.set_cal_mode("urs", None)
 | |
|     else:
 | |
|         raise ValueError("Invalid algorithm name : {:}".format(xargs.algo))
 | |
|     search_time.update(time.time() - start_time)
 | |
| 
 | |
|     valid_a_loss, valid_a_top1, valid_a_top5 = valid_func(
 | |
|         valid_loader, network, criterion, xargs.algo, logger
 | |
|     )
 | |
|     logger.log(
 | |
|         "Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.".format(
 | |
|             genotype, valid_a_top1
 | |
|         )
 | |
|     )
 | |
| 
 | |
|     logger.log("\n" + "-" * 100)
 | |
|     # check the performance from the architecture dataset
 | |
|     logger.log(
 | |
|         "[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.".format(
 | |
|             xargs.algo, total_epoch, search_time.sum, genotype
 | |
|         )
 | |
|     )
 | |
|     if api is not None:
 | |
|         logger.log("{:}".format(api.query_by_arch(genotype, "200")))
 | |
|     logger.close()
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser("Weight sharing NAS methods to search for cells.")
 | |
|     parser.add_argument("--data_path", type=str, help="Path to dataset")
 | |
|     parser.add_argument(
 | |
|         "--dataset",
 | |
|         type=str,
 | |
|         choices=["cifar10", "cifar100", "ImageNet16-120"],
 | |
|         help="Choose between Cifar10/100 and ImageNet-16.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--search_space",
 | |
|         type=str,
 | |
|         default="tss",
 | |
|         choices=["tss"],
 | |
|         help="The search space name.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--algo",
 | |
|         type=str,
 | |
|         choices=["darts-v1", "darts-v2", "gdas", "setn", "random", "enas"],
 | |
|         help="The search space name.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--use_api",
 | |
|         type=int,
 | |
|         default=1,
 | |
|         choices=[0, 1],
 | |
|         help="Whether use API or not (which will cost much memory).",
 | |
|     )
 | |
|     # FOR GDAS
 | |
|     parser.add_argument(
 | |
|         "--tau_min", type=float, default=0.1, help="The minimum tau for Gumbel Softmax."
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--tau_max", type=float, default=10, help="The maximum tau for Gumbel Softmax."
 | |
|     )
 | |
|     # channels and number-of-cells
 | |
|     parser.add_argument(
 | |
|         "--max_nodes", type=int, default=4, help="The maximum number of nodes."
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--channel", type=int, default=16, help="The number of channels."
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--num_cells", type=int, default=5, help="The number of cells in one stage."
 | |
|     )
 | |
|     #
 | |
|     parser.add_argument(
 | |
|         "--eval_candidate_num",
 | |
|         type=int,
 | |
|         default=100,
 | |
|         help="The number of selected architectures to evaluate.",
 | |
|     )
 | |
|     #
 | |
|     parser.add_argument(
 | |
|         "--track_running_stats",
 | |
|         type=int,
 | |
|         default=0,
 | |
|         choices=[0, 1],
 | |
|         help="Whether use track_running_stats or not in the BN layer.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--affine",
 | |
|         type=int,
 | |
|         default=0,
 | |
|         choices=[0, 1],
 | |
|         help="Whether use affine=True or False in the BN layer.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--config_path",
 | |
|         type=str,
 | |
|         default="./configs/nas-benchmark/algos/weight-sharing.config",
 | |
|         help="The path of configuration.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--overwite_epochs",
 | |
|         type=int,
 | |
|         help="The number of epochs to overwrite that value in config files.",
 | |
|     )
 | |
|     # architecture leraning rate
 | |
|     parser.add_argument(
 | |
|         "--arch_learning_rate",
 | |
|         type=float,
 | |
|         default=3e-4,
 | |
|         help="learning rate for arch encoding",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--arch_weight_decay",
 | |
|         type=float,
 | |
|         default=1e-3,
 | |
|         help="weight decay for arch encoding",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--arch_eps", type=float, default=1e-8, help="weight decay for arch encoding"
 | |
|     )
 | |
|     parser.add_argument("--drop_path_rate", type=float, help="The drop path rate.")
 | |
|     # log
 | |
|     parser.add_argument(
 | |
|         "--workers",
 | |
|         type=int,
 | |
|         default=2,
 | |
|         help="number of data loading workers (default: 2)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--save_dir",
 | |
|         type=str,
 | |
|         default="./output/search",
 | |
|         help="Folder to save checkpoints and log.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--print_freq", type=int, default=200, help="print frequency (default: 200)"
 | |
|     )
 | |
|     parser.add_argument("--rand_seed", type=int, help="manual seed")
 | |
|     args = parser.parse_args()
 | |
|     if args.rand_seed is None or args.rand_seed < 0:
 | |
|         args.rand_seed = random.randint(1, 100000)
 | |
|     if args.overwite_epochs is None:
 | |
|         args.save_dir = os.path.join(
 | |
|             "{:}-{:}".format(args.save_dir, args.search_space),
 | |
|             args.dataset,
 | |
|             "{:}-affine{:}_BN{:}-{:}".format(
 | |
|                 args.algo, args.affine, args.track_running_stats, args.drop_path_rate
 | |
|             ),
 | |
|         )
 | |
|     else:
 | |
|         args.save_dir = os.path.join(
 | |
|             "{:}-{:}".format(args.save_dir, args.search_space),
 | |
|             args.dataset,
 | |
|             "{:}-affine{:}_BN{:}-E{:}-{:}".format(
 | |
|                 args.algo,
 | |
|                 args.affine,
 | |
|                 args.track_running_stats,
 | |
|                 args.overwite_epochs,
 | |
|                 args.drop_path_rate,
 | |
|             ),
 | |
|         )
 | |
| 
 | |
|     main(args)
 |