45 lines
1.5 KiB
Python
45 lines
1.5 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
|
#####################################################
|
|
# pytest ./tests/test_super_model.py -s #
|
|
#####################################################
|
|
import sys, random
|
|
import unittest
|
|
import pytest
|
|
from pathlib import Path
|
|
|
|
lib_dir = (Path(__file__).parent / ".." / "lib").resolve()
|
|
print("library path: {:}".format(lib_dir))
|
|
if str(lib_dir) not in sys.path:
|
|
sys.path.insert(0, str(lib_dir))
|
|
|
|
import torch
|
|
from xlayers.super_core import SuperRunMode
|
|
from trade_models import get_transformer
|
|
|
|
|
|
class TestSuperTransformer(unittest.TestCase):
|
|
"""Test the super transformer."""
|
|
|
|
def test_super_transformer(self):
|
|
model = get_transformer(None)
|
|
model.apply_verbose(False)
|
|
print(model)
|
|
|
|
inputs = torch.rand(10, 360)
|
|
print("Input shape: {:}".format(inputs.shape))
|
|
outputs = model(inputs)
|
|
self.assertEqual(tuple(outputs.shape), (10,))
|
|
|
|
abstract_space = model.abstract_search_space
|
|
abstract_space.clean_last()
|
|
abstract_child = abstract_space.random(reuse_last=True)
|
|
print("The abstract searc space:\n{:}".format(abstract_space))
|
|
print("The abstract child program:\n{:}".format(abstract_child))
|
|
|
|
model.set_super_run_type(SuperRunMode.Candidate)
|
|
model.apply_candidate(abstract_child)
|
|
|
|
outputs = model(inputs)
|
|
self.assertEqual(tuple(outputs.shape), (10,))
|