we use an abstract class NASBenchMetaAPI to define the spec of an API; it can be inherited to support different kinds of NAS API, while keep the query interface the same.
		
			
				
	
	
		
			36 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			36 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
 | |
| #####################################################
 | |
| # [2020.02.25] Initialize the API as v1.1
 | |
| # [2020.03.09] Upgrade the API to v1.2
 | |
| # [2020.03.16] Upgrade the API to v1.3
 | |
| # [2020.06.30] Upgrade the API to v2.0
 | |
| import os
 | |
| from setuptools import setup
 | |
| 
 | |
| 
 | |
| def read(fname='README.md'):
 | |
|   with open(os.path.join(os.path.dirname(__file__), fname), encoding='utf-8') as cfile:
 | |
|     return cfile.read()
 | |
| 
 | |
| 
 | |
| setup(
 | |
|     name = "nas_bench_201",
 | |
|     version = "2.0",
 | |
|     author = "Xuanyi Dong",
 | |
|     author_email = "dongxuanyi888@gmail.com",
 | |
|     description = "API for NAS-Bench-201 (a benchmark for neural architecture search).",
 | |
|     license = "MIT",
 | |
|     keywords = "NAS Dataset API DeepLearning",
 | |
|     url = "https://github.com/D-X-Y/NAS-Bench-201",
 | |
|     packages=['nas_201_api'],
 | |
|     long_description=read('README.md'),
 | |
|     long_description_content_type='text/markdown',
 | |
|     classifiers=[
 | |
|         "Programming Language :: Python",
 | |
|         "Topic :: Database",
 | |
|         "Topic :: Scientific/Engineering :: Artificial Intelligence",
 | |
|         "License :: OSI Approved :: MIT License",
 | |
|     ],
 | |
| )
 |