254 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			254 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ###############################################################
 | |
| # NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021  #
 | |
| # The code to draw Figure 7 in our paper.                     #
 | |
| ###############################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           #
 | |
| ###############################################################
 | |
| # Usage: python exps/NATS-Bench/draw-fig7.py                  #
 | |
| ###############################################################
 | |
| import os, gc, sys, time, torch, argparse
 | |
| import numpy as np
 | |
| from typing import List, Text, Dict, Any
 | |
| from shutil import copyfile
 | |
| from collections import defaultdict, OrderedDict
 | |
| from copy import deepcopy
 | |
| from pathlib import Path
 | |
| import matplotlib
 | |
| import seaborn as sns
 | |
| 
 | |
| matplotlib.use("agg")
 | |
| import matplotlib.pyplot as plt
 | |
| import matplotlib.ticker as ticker
 | |
| 
 | |
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
 | |
| if str(lib_dir) not in sys.path:
 | |
|     sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import dict2config, load_config
 | |
| from nats_bench import create
 | |
| from log_utils import time_string
 | |
| 
 | |
| 
 | |
| def get_valid_test_acc(api, arch, dataset):
 | |
|     is_size_space = api.search_space_name == "size"
 | |
|     if dataset == "cifar10":
 | |
|         xinfo = api.get_more_info(
 | |
|             arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
 | |
|         )
 | |
|         test_acc = xinfo["test-accuracy"]
 | |
|         xinfo = api.get_more_info(
 | |
|             arch,
 | |
|             dataset="cifar10-valid",
 | |
|             hp=90 if is_size_space else 200,
 | |
|             is_random=False,
 | |
|         )
 | |
|         valid_acc = xinfo["valid-accuracy"]
 | |
|     else:
 | |
|         xinfo = api.get_more_info(
 | |
|             arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
 | |
|         )
 | |
|         valid_acc = xinfo["valid-accuracy"]
 | |
|         test_acc = xinfo["test-accuracy"]
 | |
|     return (
 | |
|         valid_acc,
 | |
|         test_acc,
 | |
|         "validation = {:.2f}, test = {:.2f}\n".format(valid_acc, test_acc),
 | |
|     )
 | |
| 
 | |
| 
 | |
| def fetch_data(
 | |
|     root_dir="./output/search", search_space="tss", dataset=None, suffix="-WARM0.3"
 | |
| ):
 | |
|     ss_dir = "{:}-{:}".format(root_dir, search_space)
 | |
|     alg2name, alg2path = OrderedDict(), OrderedDict()
 | |
|     seeds = [777, 888, 999]
 | |
|     print("\n[fetch data] from {:} on {:}".format(search_space, dataset))
 | |
|     if search_space == "tss":
 | |
|         alg2name["GDAS"] = "gdas-affine0_BN0-None"
 | |
|         alg2name["RSPS"] = "random-affine0_BN0-None"
 | |
|         alg2name["DARTS (1st)"] = "darts-v1-affine0_BN0-None"
 | |
|         alg2name["DARTS (2nd)"] = "darts-v2-affine0_BN0-None"
 | |
|         alg2name["ENAS"] = "enas-affine0_BN0-None"
 | |
|         alg2name["SETN"] = "setn-affine0_BN0-None"
 | |
|     else:
 | |
|         alg2name["channel-wise interpolation"] = "tas-affine0_BN0-AWD0.001{:}".format(
 | |
|             suffix
 | |
|         )
 | |
|         alg2name[
 | |
|             "masking + Gumbel-Softmax"
 | |
|         ] = "mask_gumbel-affine0_BN0-AWD0.001{:}".format(suffix)
 | |
|         alg2name["masking + sampling"] = "mask_rl-affine0_BN0-AWD0.0{:}".format(suffix)
 | |
|     for alg, name in alg2name.items():
 | |
|         alg2path[alg] = os.path.join(ss_dir, dataset, name, "seed-{:}-last-info.pth")
 | |
|     alg2data = OrderedDict()
 | |
|     for alg, path in alg2path.items():
 | |
|         alg2data[alg], ok_num = [], 0
 | |
|         for seed in seeds:
 | |
|             xpath = path.format(seed)
 | |
|             if os.path.isfile(xpath):
 | |
|                 ok_num += 1
 | |
|             else:
 | |
|                 print("This is an invalid path : {:}".format(xpath))
 | |
|                 continue
 | |
|             data = torch.load(xpath, map_location=torch.device("cpu"))
 | |
|             try:
 | |
|                 data = torch.load(
 | |
|                     data["last_checkpoint"], map_location=torch.device("cpu")
 | |
|                 )
 | |
|             except:
 | |
|                 xpath = str(data["last_checkpoint"]).split("E100-")
 | |
|                 if len(xpath) == 2 and os.path.isfile(xpath[0] + xpath[1]):
 | |
|                     xpath = xpath[0] + xpath[1]
 | |
|                 elif "fbv2" in str(data["last_checkpoint"]):
 | |
|                     xpath = str(data["last_checkpoint"]).replace("fbv2", "mask_gumbel")
 | |
|                 elif "tunas" in str(data["last_checkpoint"]):
 | |
|                     xpath = str(data["last_checkpoint"]).replace("tunas", "mask_rl")
 | |
|                 else:
 | |
|                     raise ValueError(
 | |
|                         "Invalid path: {:}".format(data["last_checkpoint"])
 | |
|                     )
 | |
|                 data = torch.load(xpath, map_location=torch.device("cpu"))
 | |
|             alg2data[alg].append(data["genotypes"])
 | |
|         print("This algorithm : {:} has {:} valid ckps.".format(alg, ok_num))
 | |
|         assert ok_num > 0, "Must have at least 1 valid ckps."
 | |
|     return alg2data
 | |
| 
 | |
| 
 | |
| y_min_s = {
 | |
|     ("cifar10", "tss"): 90,
 | |
|     ("cifar10", "sss"): 92,
 | |
|     ("cifar100", "tss"): 65,
 | |
|     ("cifar100", "sss"): 65,
 | |
|     ("ImageNet16-120", "tss"): 36,
 | |
|     ("ImageNet16-120", "sss"): 40,
 | |
| }
 | |
| 
 | |
| y_max_s = {
 | |
|     ("cifar10", "tss"): 94.5,
 | |
|     ("cifar10", "sss"): 93.3,
 | |
|     ("cifar100", "tss"): 72,
 | |
|     ("cifar100", "sss"): 70,
 | |
|     ("ImageNet16-120", "tss"): 44,
 | |
|     ("ImageNet16-120", "sss"): 46,
 | |
| }
 | |
| 
 | |
| name2label = {
 | |
|     "cifar10": "CIFAR-10",
 | |
|     "cifar100": "CIFAR-100",
 | |
|     "ImageNet16-120": "ImageNet-16-120",
 | |
| }
 | |
| 
 | |
| name2suffix = {
 | |
|     ("sss", "warm"): "-WARM0.3",
 | |
|     ("sss", "none"): "-WARMNone",
 | |
|     ("tss", "none"): None,
 | |
|     ("tss", None): None,
 | |
| }
 | |
| 
 | |
| 
 | |
| def visualize_curve(api, vis_save_dir, search_space, suffix):
 | |
|     vis_save_dir = vis_save_dir.resolve()
 | |
|     vis_save_dir.mkdir(parents=True, exist_ok=True)
 | |
| 
 | |
|     dpi, width, height = 250, 5200, 1400
 | |
|     figsize = width / float(dpi), height / float(dpi)
 | |
|     LabelSize, LegendFontsize = 16, 16
 | |
| 
 | |
|     def sub_plot_fn(ax, dataset):
 | |
|         print("{:} plot {:10s}".format(time_string(), dataset))
 | |
|         alg2data = fetch_data(
 | |
|             search_space=search_space,
 | |
|             dataset=dataset,
 | |
|             suffix=name2suffix[(search_space, suffix)],
 | |
|         )
 | |
|         alg2accuracies = OrderedDict()
 | |
|         epochs = 100
 | |
|         colors = ["b", "g", "c", "m", "y", "r"]
 | |
|         ax.set_xlim(0, epochs)
 | |
|         # ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
 | |
|         for idx, (alg, data) in enumerate(alg2data.items()):
 | |
|             xs, accuracies = [], []
 | |
|             for iepoch in range(epochs + 1):
 | |
|                 try:
 | |
|                     structures, accs = [_[iepoch - 1] for _ in data], []
 | |
|                 except:
 | |
|                     raise ValueError(
 | |
|                         "This alg {:} on {:} has invalid checkpoints.".format(
 | |
|                             alg, dataset
 | |
|                         )
 | |
|                     )
 | |
|                 for structure in structures:
 | |
|                     info = api.get_more_info(
 | |
|                         structure,
 | |
|                         dataset=dataset,
 | |
|                         hp=90 if api.search_space_name == "size" else 200,
 | |
|                         is_random=False,
 | |
|                     )
 | |
|                     accs.append(info["test-accuracy"])
 | |
|                 accuracies.append(sum(accs) / len(accs))
 | |
|                 xs.append(iepoch)
 | |
|             alg2accuracies[alg] = accuracies
 | |
|             ax.plot(xs, accuracies, c=colors[idx], label="{:}".format(alg))
 | |
|             ax.set_xlabel("The searching epoch", fontsize=LabelSize)
 | |
|             ax.set_ylabel(
 | |
|                 "Test accuracy on {:}".format(name2label[dataset]), fontsize=LabelSize
 | |
|             )
 | |
|             ax.set_title(
 | |
|                 "Searching results on {:}".format(name2label[dataset]),
 | |
|                 fontsize=LabelSize + 4,
 | |
|             )
 | |
|             structures, valid_accs, test_accs = [_[epochs - 1] for _ in data], [], []
 | |
|             print(
 | |
|                 "{:} plot alg : {:} -- final {:} architectures.".format(
 | |
|                     time_string(), alg, len(structures)
 | |
|                 )
 | |
|             )
 | |
|             for arch in structures:
 | |
|                 valid_acc, test_acc, _ = get_valid_test_acc(api, arch, dataset)
 | |
|                 test_accs.append(test_acc)
 | |
|                 valid_accs.append(valid_acc)
 | |
|             print(
 | |
|                 "{:} plot alg : {:} -- validation: {:.2f}$\pm${:.2f} -- test: {:.2f}$\pm${:.2f}".format(
 | |
|                     time_string(),
 | |
|                     alg,
 | |
|                     np.mean(valid_accs),
 | |
|                     np.std(valid_accs),
 | |
|                     np.mean(test_accs),
 | |
|                     np.std(test_accs),
 | |
|                 )
 | |
|             )
 | |
|         ax.legend(loc=4, fontsize=LegendFontsize)
 | |
| 
 | |
|     fig, axs = plt.subplots(1, 3, figsize=figsize)
 | |
|     datasets = ["cifar10", "cifar100", "ImageNet16-120"]
 | |
|     for dataset, ax in zip(datasets, axs):
 | |
|         sub_plot_fn(ax, dataset)
 | |
|         print("sub-plot {:} on {:} done.".format(dataset, search_space))
 | |
|     save_path = (
 | |
|         vis_save_dir / "{:}-ws-{:}-curve.png".format(search_space, suffix)
 | |
|     ).resolve()
 | |
|     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
 | |
|     print("{:} save into {:}".format(time_string(), save_path))
 | |
|     plt.close("all")
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser(
 | |
|         description="NATS-Bench", formatter_class=argparse.ArgumentDefaultsHelpFormatter
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--save_dir",
 | |
|         type=str,
 | |
|         default="output/vis-nas-bench/nas-algos",
 | |
|         help="Folder to save checkpoints and log.",
 | |
|     )
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     save_dir = Path(args.save_dir)
 | |
| 
 | |
|     api_tss = create(None, "tss", fast_mode=True, verbose=False)
 | |
|     visualize_curve(api_tss, save_dir, "tss", None)
 | |
| 
 | |
|     api_sss = create(None, "sss", fast_mode=True, verbose=False)
 | |
|     visualize_curve(api_sss, save_dir, "sss", "warm")
 | |
|     visualize_curve(api_sss, save_dir, "sss", "none")
 |