236 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			236 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ###############################################################
 | |
| # NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021  #
 | |
| # The code to draw Figure 6 in our paper.                     #
 | |
| ###############################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           #
 | |
| ###############################################################
 | |
| # Usage: python exps/NATS-Bench/draw-fig8.py                  #
 | |
| ###############################################################
 | |
| import os, gc, sys, time, torch, argparse
 | |
| import numpy as np
 | |
| from typing import List, Text, Dict, Any
 | |
| from shutil import copyfile
 | |
| from collections import defaultdict, OrderedDict
 | |
| from copy import deepcopy
 | |
| from pathlib import Path
 | |
| import matplotlib
 | |
| import seaborn as sns
 | |
| 
 | |
| matplotlib.use("agg")
 | |
| import matplotlib.pyplot as plt
 | |
| import matplotlib.ticker as ticker
 | |
| 
 | |
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
 | |
| if str(lib_dir) not in sys.path:
 | |
|     sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import dict2config, load_config
 | |
| from nats_bench import create
 | |
| from log_utils import time_string
 | |
| 
 | |
| 
 | |
| plt.rcParams.update(
 | |
|     {"text.usetex": True, "font.family": "sans-serif", "font.sans-serif": ["Helvetica"]}
 | |
| )
 | |
| ## for Palatino and other serif fonts use:
 | |
| plt.rcParams.update(
 | |
|     {
 | |
|         "text.usetex": True,
 | |
|         "font.family": "serif",
 | |
|         "font.serif": ["Palatino"],
 | |
|     }
 | |
| )
 | |
| 
 | |
| 
 | |
| def fetch_data(root_dir="./output/search", search_space="tss", dataset=None):
 | |
|     ss_dir = "{:}-{:}".format(root_dir, search_space)
 | |
|     alg2all = OrderedDict()
 | |
|     # alg2name['REINFORCE'] = 'REINFORCE-0.01'
 | |
|     # alg2name['RANDOM'] = 'RANDOM'
 | |
|     # alg2name['BOHB'] = 'BOHB'
 | |
|     if search_space == "tss":
 | |
|         hp = "$\mathcal{H}^{1}$"
 | |
|         if dataset == "cifar10":
 | |
|             suffixes = ["-T1200000", "-T1200000-FULL"]
 | |
|     elif search_space == "sss":
 | |
|         hp = "$\mathcal{H}^{2}$"
 | |
|         if dataset == "cifar10":
 | |
|             suffixes = ["-T200000", "-T200000-FULL"]
 | |
|     else:
 | |
|         raise ValueError("Unkonwn search space: {:}".format(search_space))
 | |
| 
 | |
|     alg2all[r"REA ($\mathcal{H}^{0}$)"] = dict(
 | |
|         path=os.path.join(ss_dir, dataset + suffixes[0], "R-EA-SS3", "results.pth"),
 | |
|         color="b",
 | |
|         linestyle="-",
 | |
|     )
 | |
|     alg2all[r"REA ({:})".format(hp)] = dict(
 | |
|         path=os.path.join(ss_dir, dataset + suffixes[1], "R-EA-SS3", "results.pth"),
 | |
|         color="b",
 | |
|         linestyle="--",
 | |
|     )
 | |
| 
 | |
|     for alg, xdata in alg2all.items():
 | |
|         data = torch.load(xdata["path"])
 | |
|         for index, info in data.items():
 | |
|             info["time_w_arch"] = [
 | |
|                 (x, y) for x, y in zip(info["all_total_times"], info["all_archs"])
 | |
|             ]
 | |
|             for j, arch in enumerate(info["all_archs"]):
 | |
|                 assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format(
 | |
|                     alg, search_space, dataset, index, j
 | |
|                 )
 | |
|         xdata["data"] = data
 | |
|     return alg2all
 | |
| 
 | |
| 
 | |
| def query_performance(api, data, dataset, ticket):
 | |
|     results, is_size_space = [], api.search_space_name == "size"
 | |
|     for i, info in data.items():
 | |
|         time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket))
 | |
|         time_a, arch_a = time_w_arch[0]
 | |
|         time_b, arch_b = time_w_arch[1]
 | |
|         info_a = api.get_more_info(
 | |
|             arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
 | |
|         )
 | |
|         info_b = api.get_more_info(
 | |
|             arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
 | |
|         )
 | |
|         accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"]
 | |
|         interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + (
 | |
|             ticket - time_a
 | |
|         ) / (time_b - time_a) * accuracy_b
 | |
|         results.append(interplate)
 | |
|     # return sum(results) / len(results)
 | |
|     return np.mean(results), np.std(results)
 | |
| 
 | |
| 
 | |
| y_min_s = {
 | |
|     ("cifar10", "tss"): 91,
 | |
|     ("cifar10", "sss"): 91,
 | |
|     ("cifar100", "tss"): 65,
 | |
|     ("cifar100", "sss"): 65,
 | |
|     ("ImageNet16-120", "tss"): 36,
 | |
|     ("ImageNet16-120", "sss"): 40,
 | |
| }
 | |
| 
 | |
| y_max_s = {
 | |
|     ("cifar10", "tss"): 94.5,
 | |
|     ("cifar10", "sss"): 93.5,
 | |
|     ("cifar100", "tss"): 72.5,
 | |
|     ("cifar100", "sss"): 70.5,
 | |
|     ("ImageNet16-120", "tss"): 46,
 | |
|     ("ImageNet16-120", "sss"): 46,
 | |
| }
 | |
| 
 | |
| x_axis_s = {
 | |
|     ("cifar10", "tss"): 1200000,
 | |
|     ("cifar10", "sss"): 200000,
 | |
|     ("cifar100", "tss"): 400,
 | |
|     ("cifar100", "sss"): 400,
 | |
|     ("ImageNet16-120", "tss"): 1200,
 | |
|     ("ImageNet16-120", "sss"): 600,
 | |
| }
 | |
| 
 | |
| name2label = {
 | |
|     "cifar10": "CIFAR-10",
 | |
|     "cifar100": "CIFAR-100",
 | |
|     "ImageNet16-120": "ImageNet-16-120",
 | |
| }
 | |
| 
 | |
| spaces2latex = {
 | |
|     "tss": r"$\mathcal{S}_{t}$",
 | |
|     "sss": r"$\mathcal{S}_{s}$",
 | |
| }
 | |
| 
 | |
| 
 | |
| # FuncFormatter can be used as a decorator
 | |
| @ticker.FuncFormatter
 | |
| def major_formatter(x, pos):
 | |
|     if x == 0:
 | |
|         return "0"
 | |
|     else:
 | |
|         return "{:.2f}e5".format(x / 1e5)
 | |
| 
 | |
| 
 | |
| def visualize_curve(api_dict, vis_save_dir):
 | |
|     vis_save_dir = vis_save_dir.resolve()
 | |
|     vis_save_dir.mkdir(parents=True, exist_ok=True)
 | |
| 
 | |
|     dpi, width, height = 250, 5000, 2000
 | |
|     figsize = width / float(dpi), height / float(dpi)
 | |
|     LabelSize, LegendFontsize = 28, 28
 | |
| 
 | |
|     def sub_plot_fn(ax, search_space, dataset):
 | |
|         max_time = x_axis_s[(dataset, search_space)]
 | |
|         alg2data = fetch_data(search_space=search_space, dataset=dataset)
 | |
|         alg2accuracies = OrderedDict()
 | |
|         total_tickets = 200
 | |
|         time_tickets = [
 | |
|             float(i) / total_tickets * int(max_time) for i in range(total_tickets)
 | |
|         ]
 | |
|         ax.set_xlim(0, x_axis_s[(dataset, search_space)])
 | |
|         ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
 | |
|         for tick in ax.get_xticklabels():
 | |
|             tick.set_rotation(25)
 | |
|             tick.set_fontsize(LabelSize - 6)
 | |
|         for tick in ax.get_yticklabels():
 | |
|             tick.set_fontsize(LabelSize - 6)
 | |
|         ax.xaxis.set_major_formatter(major_formatter)
 | |
|         for idx, (alg, xdata) in enumerate(alg2data.items()):
 | |
|             accuracies = []
 | |
|             for ticket in time_tickets:
 | |
|                 # import pdb; pdb.set_trace()
 | |
|                 accuracy, accuracy_std = query_performance(
 | |
|                     api_dict[search_space], xdata["data"], dataset, ticket
 | |
|                 )
 | |
|                 accuracies.append(accuracy)
 | |
|             # print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std))
 | |
|             print(
 | |
|                 "{:} plot alg : {:10s} on {:}".format(time_string(), alg, search_space)
 | |
|             )
 | |
|             alg2accuracies[alg] = accuracies
 | |
|             ax.plot(
 | |
|                 time_tickets,
 | |
|                 accuracies,
 | |
|                 c=xdata["color"],
 | |
|                 linestyle=xdata["linestyle"],
 | |
|                 label="{:}".format(alg),
 | |
|             )
 | |
|             ax.set_xlabel("Estimated wall-clock time", fontsize=LabelSize)
 | |
|             ax.set_ylabel("Test accuracy", fontsize=LabelSize)
 | |
|             ax.set_title(
 | |
|                 r"Results on {:} over {:}".format(
 | |
|                     name2label[dataset], spaces2latex[search_space]
 | |
|                 ),
 | |
|                 fontsize=LabelSize,
 | |
|             )
 | |
|         ax.legend(loc=4, fontsize=LegendFontsize)
 | |
| 
 | |
|     fig, axs = plt.subplots(1, 2, figsize=figsize)
 | |
|     sub_plot_fn(axs[0], "tss", "cifar10")
 | |
|     sub_plot_fn(axs[1], "sss", "cifar10")
 | |
|     save_path = (vis_save_dir / "full-curve.png").resolve()
 | |
|     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
 | |
|     print("{:} save into {:}".format(time_string(), save_path))
 | |
|     plt.close("all")
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser(
 | |
|         description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size",
 | |
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter,
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--save_dir",
 | |
|         type=str,
 | |
|         default="output/vis-nas-bench/nas-algos-vs-h",
 | |
|         help="Folder to save checkpoints and log.",
 | |
|     )
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     save_dir = Path(args.save_dir)
 | |
| 
 | |
|     api_tss = create(None, "tss", fast_mode=True, verbose=False)
 | |
|     api_sss = create(None, "sss", fast_mode=True, verbose=False)
 | |
|     visualize_curve(dict(tss=api_tss, sss=api_sss), save_dir)
 |