189 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			189 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ###############################################################
 | |
| # NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021  #
 | |
| # The code to draw Figure 2 / 3 / 4 / 5 in our paper.         #
 | |
| ###############################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           #
 | |
| ###############################################################
 | |
| # Usage: python exps/NATS-Bench/draw-ranks.py                 #
 | |
| ###############################################################
 | |
| import os, sys, time, torch, argparse
 | |
| import scipy
 | |
| import numpy as np
 | |
| from typing import List, Text, Dict, Any
 | |
| from shutil import copyfile
 | |
| from collections import defaultdict, OrderedDict
 | |
| from copy import deepcopy
 | |
| from pathlib import Path
 | |
| import matplotlib
 | |
| import seaborn as sns
 | |
| 
 | |
| matplotlib.use("agg")
 | |
| import matplotlib.pyplot as plt
 | |
| import matplotlib.ticker as ticker
 | |
| 
 | |
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
 | |
| if str(lib_dir) not in sys.path:
 | |
|     sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import dict2config, load_config
 | |
| from log_utils import time_string
 | |
| from models import get_cell_based_tiny_net
 | |
| from nats_bench import create
 | |
| 
 | |
| 
 | |
| name2label = {
 | |
|     "cifar10": "CIFAR-10",
 | |
|     "cifar100": "CIFAR-100",
 | |
|     "ImageNet16-120": "ImageNet-16-120",
 | |
| }
 | |
| 
 | |
| 
 | |
| def visualize_relative_info(vis_save_dir, search_space, indicator, topk):
 | |
|     vis_save_dir = vis_save_dir.resolve()
 | |
|     print(
 | |
|         "{:} start to visualize {:} with top-{:} information".format(
 | |
|             time_string(), search_space, topk
 | |
|         )
 | |
|     )
 | |
|     vis_save_dir.mkdir(parents=True, exist_ok=True)
 | |
|     cache_file_path = vis_save_dir / "cache-{:}-info.pth".format(search_space)
 | |
|     datasets = ["cifar10", "cifar100", "ImageNet16-120"]
 | |
|     if not cache_file_path.exists():
 | |
|         api = create(None, search_space, fast_mode=False, verbose=False)
 | |
|         all_infos = OrderedDict()
 | |
|         for index in range(len(api)):
 | |
|             all_info = OrderedDict()
 | |
|             for dataset in datasets:
 | |
|                 info_less = api.get_more_info(index, dataset, hp="12", is_random=False)
 | |
|                 info_more = api.get_more_info(
 | |
|                     index, dataset, hp=api.full_train_epochs, is_random=False
 | |
|                 )
 | |
|                 all_info[dataset] = dict(
 | |
|                     less=info_less["test-accuracy"], more=info_more["test-accuracy"]
 | |
|                 )
 | |
|             all_infos[index] = all_info
 | |
|         torch.save(all_infos, cache_file_path)
 | |
|         print("{:} save all cache data into {:}".format(time_string(), cache_file_path))
 | |
|     else:
 | |
|         api = create(None, search_space, fast_mode=True, verbose=False)
 | |
|         all_infos = torch.load(cache_file_path)
 | |
| 
 | |
|     dpi, width, height = 250, 5000, 1300
 | |
|     figsize = width / float(dpi), height / float(dpi)
 | |
|     LabelSize, LegendFontsize = 16, 16
 | |
| 
 | |
|     fig, axs = plt.subplots(1, 3, figsize=figsize)
 | |
|     datasets = ["cifar10", "cifar100", "ImageNet16-120"]
 | |
| 
 | |
|     def sub_plot_fn(ax, dataset, indicator):
 | |
|         performances = []
 | |
|         # pickup top 10% architectures
 | |
|         for _index in range(len(api)):
 | |
|             performances.append((all_infos[_index][dataset][indicator], _index))
 | |
|         performances = sorted(performances, reverse=True)
 | |
|         performances = performances[: int(len(api) * topk * 0.01)]
 | |
|         selected_indexes = [x[1] for x in performances]
 | |
|         print(
 | |
|             "{:} plot {:10s} with {:}, {:} architectures".format(
 | |
|                 time_string(), dataset, indicator, len(selected_indexes)
 | |
|             )
 | |
|         )
 | |
|         standard_scores = []
 | |
|         random_scores = []
 | |
|         for idx in selected_indexes:
 | |
|             standard_scores.append(
 | |
|                 api.get_more_info(
 | |
|                     idx,
 | |
|                     dataset,
 | |
|                     hp=api.full_train_epochs if indicator == "more" else "12",
 | |
|                     is_random=False,
 | |
|                 )["test-accuracy"]
 | |
|             )
 | |
|             random_scores.append(
 | |
|                 api.get_more_info(
 | |
|                     idx,
 | |
|                     dataset,
 | |
|                     hp=api.full_train_epochs if indicator == "more" else "12",
 | |
|                     is_random=True,
 | |
|                 )["test-accuracy"]
 | |
|             )
 | |
|         indexes = list(range(len(selected_indexes)))
 | |
|         standard_indexes = sorted(indexes, key=lambda i: standard_scores[i])
 | |
|         random_indexes = sorted(indexes, key=lambda i: random_scores[i])
 | |
|         random_labels = []
 | |
|         for idx in standard_indexes:
 | |
|             random_labels.append(random_indexes.index(idx))
 | |
|         for tick in ax.get_xticklabels():
 | |
|             tick.set_fontsize(LabelSize - 3)
 | |
|         for tick in ax.get_yticklabels():
 | |
|             tick.set_rotation(25)
 | |
|             tick.set_fontsize(LabelSize - 3)
 | |
|         ax.set_xlim(0, len(indexes))
 | |
|         ax.set_ylim(0, len(indexes))
 | |
|         ax.set_yticks(np.arange(min(indexes), max(indexes), max(indexes) // 3))
 | |
|         ax.set_xticks(np.arange(min(indexes), max(indexes), max(indexes) // 5))
 | |
|         ax.scatter(indexes, random_labels, marker="^", s=0.5, c="tab:green", alpha=0.8)
 | |
|         ax.scatter(indexes, indexes, marker="o", s=0.5, c="tab:blue", alpha=0.8)
 | |
|         ax.scatter(
 | |
|             [-1],
 | |
|             [-1],
 | |
|             marker="o",
 | |
|             s=100,
 | |
|             c="tab:blue",
 | |
|             label="Average Over Multi-Trials",
 | |
|         )
 | |
|         ax.scatter(
 | |
|             [-1],
 | |
|             [-1],
 | |
|             marker="^",
 | |
|             s=100,
 | |
|             c="tab:green",
 | |
|             label="Randomly Selected Trial",
 | |
|         )
 | |
| 
 | |
|         coef, p = scipy.stats.kendalltau(standard_scores, random_scores)
 | |
|         ax.set_xlabel(
 | |
|             "architecture ranking in {:}".format(name2label[dataset]),
 | |
|             fontsize=LabelSize,
 | |
|         )
 | |
|         if dataset == "cifar10":
 | |
|             ax.set_ylabel("architecture ranking", fontsize=LabelSize)
 | |
|         ax.legend(loc=4, fontsize=LegendFontsize)
 | |
|         return coef
 | |
| 
 | |
|     for dataset, ax in zip(datasets, axs):
 | |
|         rank_coef = sub_plot_fn(ax, dataset, indicator)
 | |
|         print(
 | |
|             "sub-plot {:} on {:} done, the ranking coefficient is {:.4f}.".format(
 | |
|                 dataset, search_space, rank_coef
 | |
|             )
 | |
|         )
 | |
| 
 | |
|     save_path = (
 | |
|         vis_save_dir / "{:}-rank-{:}-top{:}.pdf".format(search_space, indicator, topk)
 | |
|     ).resolve()
 | |
|     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="pdf")
 | |
|     save_path = (
 | |
|         vis_save_dir / "{:}-rank-{:}-top{:}.png".format(search_space, indicator, topk)
 | |
|     ).resolve()
 | |
|     fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
 | |
|     print("Save into {:}".format(save_path))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser(
 | |
|         description="NATS-Bench", formatter_class=argparse.ArgumentDefaultsHelpFormatter
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--save_dir",
 | |
|         type=str,
 | |
|         default="output/vis-nas-bench/rank-stability",
 | |
|         help="Folder to save checkpoints and log.",
 | |
|     )
 | |
|     args = parser.parse_args()
 | |
|     to_save_dir = Path(args.save_dir)
 | |
| 
 | |
|     for topk in [1, 5, 10, 20]:
 | |
|         visualize_relative_info(to_save_dir, "tss", "more", topk)
 | |
|         visualize_relative_info(to_save_dir, "sss", "less", topk)
 | |
|     print("{:} : complete running this file : {:}".format(time_string(), __file__))
 |