195 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ###############################################################
 | |
| # NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021  #
 | |
| # The code to draw some results in Table 4 in our paper.      #
 | |
| ###############################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06           #
 | |
| ###############################################################
 | |
| # Usage: python exps/NATS-Bench/draw-table.py                 #
 | |
| ###############################################################
 | |
| import os, gc, sys, time, torch, argparse
 | |
| import numpy as np
 | |
| from typing import List, Text, Dict, Any
 | |
| from shutil import copyfile
 | |
| from collections import defaultdict, OrderedDict
 | |
| from copy import deepcopy
 | |
| from pathlib import Path
 | |
| import matplotlib
 | |
| import seaborn as sns
 | |
| 
 | |
| matplotlib.use("agg")
 | |
| import matplotlib.pyplot as plt
 | |
| import matplotlib.ticker as ticker
 | |
| 
 | |
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
 | |
| if str(lib_dir) not in sys.path:
 | |
|     sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import dict2config, load_config
 | |
| from nats_bench import create
 | |
| from log_utils import time_string
 | |
| 
 | |
| 
 | |
| def fetch_data(root_dir="./output/search", search_space="tss", dataset=None):
 | |
|     ss_dir = "{:}-{:}".format(root_dir, search_space)
 | |
|     alg2name, alg2path = OrderedDict(), OrderedDict()
 | |
|     alg2name["REA"] = "R-EA-SS3"
 | |
|     alg2name["REINFORCE"] = "REINFORCE-0.01"
 | |
|     alg2name["RANDOM"] = "RANDOM"
 | |
|     alg2name["BOHB"] = "BOHB"
 | |
|     for alg, name in alg2name.items():
 | |
|         alg2path[alg] = os.path.join(ss_dir, dataset, name, "results.pth")
 | |
|         assert os.path.isfile(alg2path[alg]), "invalid path : {:}".format(alg2path[alg])
 | |
|     alg2data = OrderedDict()
 | |
|     for alg, path in alg2path.items():
 | |
|         data = torch.load(path)
 | |
|         for index, info in data.items():
 | |
|             info["time_w_arch"] = [
 | |
|                 (x, y) for x, y in zip(info["all_total_times"], info["all_archs"])
 | |
|             ]
 | |
|             for j, arch in enumerate(info["all_archs"]):
 | |
|                 assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format(
 | |
|                     alg, search_space, dataset, index, j
 | |
|                 )
 | |
|         alg2data[alg] = data
 | |
|     return alg2data
 | |
| 
 | |
| 
 | |
| def get_valid_test_acc(api, arch, dataset):
 | |
|     is_size_space = api.search_space_name == "size"
 | |
|     if dataset == "cifar10":
 | |
|         xinfo = api.get_more_info(
 | |
|             arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
 | |
|         )
 | |
|         test_acc = xinfo["test-accuracy"]
 | |
|         xinfo = api.get_more_info(
 | |
|             arch,
 | |
|             dataset="cifar10-valid",
 | |
|             hp=90 if is_size_space else 200,
 | |
|             is_random=False,
 | |
|         )
 | |
|         valid_acc = xinfo["valid-accuracy"]
 | |
|     else:
 | |
|         xinfo = api.get_more_info(
 | |
|             arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
 | |
|         )
 | |
|         valid_acc = xinfo["valid-accuracy"]
 | |
|         test_acc = xinfo["test-accuracy"]
 | |
|     return (
 | |
|         valid_acc,
 | |
|         test_acc,
 | |
|         "validation = {:.2f}, test = {:.2f}\n".format(valid_acc, test_acc),
 | |
|     )
 | |
| 
 | |
| 
 | |
| def show_valid_test(api, arch):
 | |
|     is_size_space = api.search_space_name == "size"
 | |
|     final_str = ""
 | |
|     for dataset in ["cifar10", "cifar100", "ImageNet16-120"]:
 | |
|         valid_acc, test_acc, perf_str = get_valid_test_acc(api, arch, dataset)
 | |
|         final_str += "{:} : {:}\n".format(dataset, perf_str)
 | |
|     return final_str
 | |
| 
 | |
| 
 | |
| def find_best_valid(api, dataset):
 | |
|     all_valid_accs, all_test_accs = [], []
 | |
|     for index, arch in enumerate(api):
 | |
|         valid_acc, test_acc, perf_str = get_valid_test_acc(api, index, dataset)
 | |
|         all_valid_accs.append((index, valid_acc))
 | |
|         all_test_accs.append((index, test_acc))
 | |
|     best_valid_index = sorted(all_valid_accs, key=lambda x: -x[1])[0][0]
 | |
|     best_test_index = sorted(all_test_accs, key=lambda x: -x[1])[0][0]
 | |
| 
 | |
|     print("-" * 50 + "{:10s}".format(dataset) + "-" * 50)
 | |
|     print(
 | |
|         "Best ({:}) architecture on validation: {:}".format(
 | |
|             best_valid_index, api[best_valid_index]
 | |
|         )
 | |
|     )
 | |
|     print(
 | |
|         "Best ({:}) architecture on       test: {:}".format(
 | |
|             best_test_index, api[best_test_index]
 | |
|         )
 | |
|     )
 | |
|     _, _, perf_str = get_valid_test_acc(api, best_valid_index, dataset)
 | |
|     print("using validation ::: {:}".format(perf_str))
 | |
|     _, _, perf_str = get_valid_test_acc(api, best_test_index, dataset)
 | |
|     print("using test       ::: {:}".format(perf_str))
 | |
| 
 | |
| 
 | |
| def interplate_fn(xpair1, xpair2, x):
 | |
|     (x1, y1) = xpair1
 | |
|     (x2, y2) = xpair2
 | |
|     return (x2 - x) / (x2 - x1) * y1 + (x - x1) / (x2 - x1) * y2
 | |
| 
 | |
| 
 | |
| def query_performance(api, info, dataset, ticket):
 | |
|     info = deepcopy(info)
 | |
|     results, is_size_space = [], api.search_space_name == "size"
 | |
|     time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket))
 | |
|     time_a, arch_a = time_w_arch[0]
 | |
|     time_b, arch_b = time_w_arch[1]
 | |
| 
 | |
|     v_acc_a, t_acc_a, _ = get_valid_test_acc(api, arch_a, dataset)
 | |
|     v_acc_b, t_acc_b, _ = get_valid_test_acc(api, arch_b, dataset)
 | |
|     v_acc = interplate_fn((time_a, v_acc_a), (time_b, v_acc_b), ticket)
 | |
|     t_acc = interplate_fn((time_a, t_acc_a), (time_b, t_acc_b), ticket)
 | |
|     # if True:
 | |
|     #   interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b
 | |
|     #   results.append(interplate)
 | |
|     # return sum(results) / len(results)
 | |
|     return v_acc, t_acc
 | |
| 
 | |
| 
 | |
| def show_multi_trial(search_space):
 | |
|     api = create(None, search_space, fast_mode=True, verbose=False)
 | |
| 
 | |
|     def show(dataset):
 | |
|         print("show {:} on {:} done.".format(dataset, search_space))
 | |
|         xdataset, max_time = dataset.split("-T")
 | |
|         alg2data = fetch_data(search_space=search_space, dataset=dataset)
 | |
|         for idx, (alg, data) in enumerate(alg2data.items()):
 | |
| 
 | |
|             valid_accs, test_accs = [], []
 | |
|             for _, x in data.items():
 | |
|                 v_acc, t_acc = query_performance(api, x, xdataset, float(max_time))
 | |
|                 valid_accs.append(v_acc)
 | |
|                 test_accs.append(t_acc)
 | |
|             valid_str = "{:.2f}$\pm${:.2f}".format(
 | |
|                 np.mean(valid_accs), np.std(valid_accs)
 | |
|             )
 | |
|             test_str = "{:.2f}$\pm${:.2f}".format(np.mean(test_accs), np.std(test_accs))
 | |
|             print(
 | |
|                 "{:} plot alg : {:10s}  | validation = {:} | test = {:}".format(
 | |
|                     time_string(), alg, valid_str, test_str
 | |
|                 )
 | |
|             )
 | |
| 
 | |
|     if search_space == "tss":
 | |
|         datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T120000"]
 | |
|     elif search_space == "sss":
 | |
|         datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T60000"]
 | |
|     else:
 | |
|         raise ValueError("Unknown search space: {:}".format(search_space))
 | |
|     for dataset in datasets:
 | |
|         show(dataset)
 | |
|     print("{:} complete show multi-trial results.\n".format(time_string()))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
| 
 | |
|     show_multi_trial("tss")
 | |
|     show_multi_trial("sss")
 | |
| 
 | |
|     api_tss = create(None, "tss", fast_mode=False, verbose=False)
 | |
|     resnet = "|nor_conv_3x3~0|+|none~0|nor_conv_3x3~1|+|skip_connect~0|none~1|skip_connect~2|"
 | |
|     resnet_index = api_tss.query_index_by_arch(resnet)
 | |
|     print(show_valid_test(api_tss, resnet_index))
 | |
| 
 | |
|     for dataset in ["cifar10", "cifar100", "ImageNet16-120"]:
 | |
|         find_best_valid(api_tss, dataset)
 | |
| 
 | |
|     largest = "64:64:64:64:64"
 | |
|     largest_index = api_sss.query_index_by_arch(largest)
 | |
|     print(show_valid_test(api_sss, largest_index))
 | |
|     for dataset in ["cifar10", "cifar100", "ImageNet16-120"]:
 | |
|         find_best_valid(api_sss, dataset)
 |