490 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			490 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##############################################################################
 | |
| # NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size #
 | |
| ##############################################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07                          #
 | |
| ##############################################################################
 | |
| # This file is used to train (all) architecture candidate in the size search #
 | |
| # space in NATS-Bench (sss) with different hyper-parameters.                 #
 | |
| # When use mode=new, it will automatically detect whether the checkpoint of  #
 | |
| # a trial exists, if so, it will skip this trial. When use mode=cover, it    #
 | |
| # will ignore the (possible) existing checkpoint, run each trial, and save.  #
 | |
| # (NOTE): the topology for all candidates in sss is fixed as:                ######################
 | |
| # |nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2| #
 | |
| ###################################################################################################
 | |
| # Please use the script of scripts/NATS-Bench/train-shapes.sh to run.        #
 | |
| ##############################################################################
 | |
| import os, sys, time, torch, argparse
 | |
| from typing import List, Text, Dict, Any
 | |
| from PIL import ImageFile
 | |
| 
 | |
| ImageFile.LOAD_TRUNCATED_IMAGES = True
 | |
| from copy import deepcopy
 | |
| from pathlib import Path
 | |
| 
 | |
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
 | |
| if str(lib_dir) not in sys.path:
 | |
|     sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import dict2config, load_config
 | |
| from procedures import bench_evaluate_for_seed
 | |
| from procedures import get_machine_info
 | |
| from datasets import get_datasets
 | |
| from log_utils import Logger, AverageMeter, time_string, convert_secs2time
 | |
| from utils import split_str2indexes
 | |
| 
 | |
| 
 | |
| def evaluate_all_datasets(
 | |
|     channels: Text,
 | |
|     datasets: List[Text],
 | |
|     xpaths: List[Text],
 | |
|     splits: List[Text],
 | |
|     config_path: Text,
 | |
|     seed: int,
 | |
|     workers: int,
 | |
|     logger,
 | |
| ):
 | |
|     machine_info = get_machine_info()
 | |
|     all_infos = {"info": machine_info}
 | |
|     all_dataset_keys = []
 | |
|     # look all the dataset
 | |
|     for dataset, xpath, split in zip(datasets, xpaths, splits):
 | |
|         # the train and valid data
 | |
|         train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1)
 | |
|         # load the configuration
 | |
|         if dataset == "cifar10" or dataset == "cifar100":
 | |
|             split_info = load_config(
 | |
|                 "configs/nas-benchmark/cifar-split.txt", None, None
 | |
|             )
 | |
|         elif dataset.startswith("ImageNet16"):
 | |
|             split_info = load_config(
 | |
|                 "configs/nas-benchmark/{:}-split.txt".format(dataset), None, None
 | |
|             )
 | |
|         else:
 | |
|             raise ValueError("invalid dataset : {:}".format(dataset))
 | |
|         config = load_config(
 | |
|             config_path, dict(class_num=class_num, xshape=xshape), logger
 | |
|         )
 | |
|         # check whether use the splitted validation set
 | |
|         if bool(split):
 | |
|             assert dataset == "cifar10"
 | |
|             ValLoaders = {
 | |
|                 "ori-test": torch.utils.data.DataLoader(
 | |
|                     valid_data,
 | |
|                     batch_size=config.batch_size,
 | |
|                     shuffle=False,
 | |
|                     num_workers=workers,
 | |
|                     pin_memory=True,
 | |
|                 )
 | |
|             }
 | |
|             assert len(train_data) == len(split_info.train) + len(
 | |
|                 split_info.valid
 | |
|             ), "invalid length : {:} vs {:} + {:}".format(
 | |
|                 len(train_data), len(split_info.train), len(split_info.valid)
 | |
|             )
 | |
|             train_data_v2 = deepcopy(train_data)
 | |
|             train_data_v2.transform = valid_data.transform
 | |
|             valid_data = train_data_v2
 | |
|             # data loader
 | |
|             train_loader = torch.utils.data.DataLoader(
 | |
|                 train_data,
 | |
|                 batch_size=config.batch_size,
 | |
|                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train),
 | |
|                 num_workers=workers,
 | |
|                 pin_memory=True,
 | |
|             )
 | |
|             valid_loader = torch.utils.data.DataLoader(
 | |
|                 valid_data,
 | |
|                 batch_size=config.batch_size,
 | |
|                 sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid),
 | |
|                 num_workers=workers,
 | |
|                 pin_memory=True,
 | |
|             )
 | |
|             ValLoaders["x-valid"] = valid_loader
 | |
|         else:
 | |
|             # data loader
 | |
|             train_loader = torch.utils.data.DataLoader(
 | |
|                 train_data,
 | |
|                 batch_size=config.batch_size,
 | |
|                 shuffle=True,
 | |
|                 num_workers=workers,
 | |
|                 pin_memory=True,
 | |
|             )
 | |
|             valid_loader = torch.utils.data.DataLoader(
 | |
|                 valid_data,
 | |
|                 batch_size=config.batch_size,
 | |
|                 shuffle=False,
 | |
|                 num_workers=workers,
 | |
|                 pin_memory=True,
 | |
|             )
 | |
|             if dataset == "cifar10":
 | |
|                 ValLoaders = {"ori-test": valid_loader}
 | |
|             elif dataset == "cifar100":
 | |
|                 cifar100_splits = load_config(
 | |
|                     "configs/nas-benchmark/cifar100-test-split.txt", None, None
 | |
|                 )
 | |
|                 ValLoaders = {
 | |
|                     "ori-test": valid_loader,
 | |
|                     "x-valid": torch.utils.data.DataLoader(
 | |
|                         valid_data,
 | |
|                         batch_size=config.batch_size,
 | |
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(
 | |
|                             cifar100_splits.xvalid
 | |
|                         ),
 | |
|                         num_workers=workers,
 | |
|                         pin_memory=True,
 | |
|                     ),
 | |
|                     "x-test": torch.utils.data.DataLoader(
 | |
|                         valid_data,
 | |
|                         batch_size=config.batch_size,
 | |
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(
 | |
|                             cifar100_splits.xtest
 | |
|                         ),
 | |
|                         num_workers=workers,
 | |
|                         pin_memory=True,
 | |
|                     ),
 | |
|                 }
 | |
|             elif dataset == "ImageNet16-120":
 | |
|                 imagenet16_splits = load_config(
 | |
|                     "configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None
 | |
|                 )
 | |
|                 ValLoaders = {
 | |
|                     "ori-test": valid_loader,
 | |
|                     "x-valid": torch.utils.data.DataLoader(
 | |
|                         valid_data,
 | |
|                         batch_size=config.batch_size,
 | |
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(
 | |
|                             imagenet16_splits.xvalid
 | |
|                         ),
 | |
|                         num_workers=workers,
 | |
|                         pin_memory=True,
 | |
|                     ),
 | |
|                     "x-test": torch.utils.data.DataLoader(
 | |
|                         valid_data,
 | |
|                         batch_size=config.batch_size,
 | |
|                         sampler=torch.utils.data.sampler.SubsetRandomSampler(
 | |
|                             imagenet16_splits.xtest
 | |
|                         ),
 | |
|                         num_workers=workers,
 | |
|                         pin_memory=True,
 | |
|                     ),
 | |
|                 }
 | |
|             else:
 | |
|                 raise ValueError("invalid dataset : {:}".format(dataset))
 | |
| 
 | |
|         dataset_key = "{:}".format(dataset)
 | |
|         if bool(split):
 | |
|             dataset_key = dataset_key + "-valid"
 | |
|         logger.log(
 | |
|             "Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
 | |
|                 dataset_key,
 | |
|                 len(train_data),
 | |
|                 len(valid_data),
 | |
|                 len(train_loader),
 | |
|                 len(valid_loader),
 | |
|                 config.batch_size,
 | |
|             )
 | |
|         )
 | |
|         logger.log(
 | |
|             "Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config)
 | |
|         )
 | |
|         for key, value in ValLoaders.items():
 | |
|             logger.log(
 | |
|                 "Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value))
 | |
|             )
 | |
|         # arch-index= 9930, arch=|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|
 | |
|         # this genotype is the architecture with the highest accuracy on CIFAR-100 validation set
 | |
|         genotype = "|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|"
 | |
|         arch_config = dict2config(
 | |
|             dict(
 | |
|                 name="infer.shape.tiny",
 | |
|                 channels=channels,
 | |
|                 genotype=genotype,
 | |
|                 num_classes=class_num,
 | |
|             ),
 | |
|             None,
 | |
|         )
 | |
|         results = bench_evaluate_for_seed(
 | |
|             arch_config, config, train_loader, ValLoaders, seed, logger
 | |
|         )
 | |
|         all_infos[dataset_key] = results
 | |
|         all_dataset_keys.append(dataset_key)
 | |
|     all_infos["all_dataset_keys"] = all_dataset_keys
 | |
|     return all_infos
 | |
| 
 | |
| 
 | |
| def main(
 | |
|     save_dir: Path,
 | |
|     workers: int,
 | |
|     datasets: List[Text],
 | |
|     xpaths: List[Text],
 | |
|     splits: List[int],
 | |
|     seeds: List[int],
 | |
|     nets: List[str],
 | |
|     opt_config: Dict[Text, Any],
 | |
|     to_evaluate_indexes: tuple,
 | |
|     cover_mode: bool,
 | |
| ):
 | |
| 
 | |
|     log_dir = save_dir / "logs"
 | |
|     log_dir.mkdir(parents=True, exist_ok=True)
 | |
|     logger = Logger(str(log_dir), os.getpid(), False)
 | |
| 
 | |
|     logger.log("xargs : seeds      = {:}".format(seeds))
 | |
|     logger.log("xargs : cover_mode = {:}".format(cover_mode))
 | |
|     logger.log("-" * 100)
 | |
|     logger.log(
 | |
|         "Start evaluating range =: {:06d} - {:06d}".format(
 | |
|             min(to_evaluate_indexes), max(to_evaluate_indexes)
 | |
|         )
 | |
|         + "({:} in total) / {:06d} with cover-mode={:}".format(
 | |
|             len(to_evaluate_indexes), len(nets), cover_mode
 | |
|         )
 | |
|     )
 | |
|     for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)):
 | |
|         logger.log(
 | |
|             "--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}".format(
 | |
|                 i, len(datasets), dataset, xpath, split
 | |
|             )
 | |
|         )
 | |
|     logger.log("--->>> optimization config : {:}".format(opt_config))
 | |
| 
 | |
|     start_time, epoch_time = time.time(), AverageMeter()
 | |
|     for i, index in enumerate(to_evaluate_indexes):
 | |
|         channelstr = nets[index]
 | |
|         logger.log(
 | |
|             "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] {:}".format(
 | |
|                 time_string(),
 | |
|                 i,
 | |
|                 len(to_evaluate_indexes),
 | |
|                 index,
 | |
|                 len(nets),
 | |
|                 seeds,
 | |
|                 "-" * 15,
 | |
|             )
 | |
|         )
 | |
|         logger.log("{:} {:} {:}".format("-" * 15, channelstr, "-" * 15))
 | |
| 
 | |
|         # test this arch on different datasets with different seeds
 | |
|         has_continue = False
 | |
|         for seed in seeds:
 | |
|             to_save_name = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed)
 | |
|             if to_save_name.exists():
 | |
|                 if cover_mode:
 | |
|                     logger.log(
 | |
|                         "Find existing file : {:}, remove it before evaluation".format(
 | |
|                             to_save_name
 | |
|                         )
 | |
|                     )
 | |
|                     os.remove(str(to_save_name))
 | |
|                 else:
 | |
|                     logger.log(
 | |
|                         "Find existing file : {:}, skip this evaluation".format(
 | |
|                             to_save_name
 | |
|                         )
 | |
|                     )
 | |
|                     has_continue = True
 | |
|                     continue
 | |
|             results = evaluate_all_datasets(
 | |
|                 channelstr, datasets, xpaths, splits, opt_config, seed, workers, logger
 | |
|             )
 | |
|             torch.save(results, to_save_name)
 | |
|             logger.log(
 | |
|                 "\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] ===>>> {:}".format(
 | |
|                     time_string(),
 | |
|                     i,
 | |
|                     len(to_evaluate_indexes),
 | |
|                     index,
 | |
|                     len(nets),
 | |
|                     seeds,
 | |
|                     to_save_name,
 | |
|                 )
 | |
|             )
 | |
|         # measure elapsed time
 | |
|         if not has_continue:
 | |
|             epoch_time.update(time.time() - start_time)
 | |
|         start_time = time.time()
 | |
|         need_time = "Time Left: {:}".format(
 | |
|             convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True)
 | |
|         )
 | |
|         logger.log(
 | |
|             "This arch costs : {:}".format(convert_secs2time(epoch_time.val, True))
 | |
|         )
 | |
|         logger.log("{:}".format("*" * 100))
 | |
|         logger.log(
 | |
|             "{:}   {:74s}   {:}".format(
 | |
|                 "*" * 10,
 | |
|                 "{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format(
 | |
|                     i, len(to_evaluate_indexes), index, len(nets), need_time
 | |
|                 ),
 | |
|                 "*" * 10,
 | |
|             )
 | |
|         )
 | |
|         logger.log("{:}".format("*" * 100))
 | |
| 
 | |
|     logger.close()
 | |
| 
 | |
| 
 | |
| def traverse_net(candidates: List[int], N: int):
 | |
|     nets = [""]
 | |
|     for i in range(N):
 | |
|         new_nets = []
 | |
|         for net in nets:
 | |
|             for C in candidates:
 | |
|                 new_nets.append(str(C) if net == "" else "{:}:{:}".format(net, C))
 | |
|         nets = new_nets
 | |
|     return nets
 | |
| 
 | |
| 
 | |
| def filter_indexes(xlist, mode, save_dir, seeds):
 | |
|     all_indexes = []
 | |
|     for index in xlist:
 | |
|         if mode == "cover":
 | |
|             all_indexes.append(index)
 | |
|         else:
 | |
|             for seed in seeds:
 | |
|                 temp_path = save_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed)
 | |
|                 if not temp_path.exists():
 | |
|                     all_indexes.append(index)
 | |
|                     break
 | |
|     print(
 | |
|         "{:} [FILTER-INDEXES] : there are {:}/{:} architectures in total".format(
 | |
|             time_string(), len(all_indexes), len(xlist)
 | |
|         )
 | |
|     )
 | |
| 
 | |
|     SLURM_PROCID, SLURM_NTASKS = "SLURM_PROCID", "SLURM_NTASKS"
 | |
|     if SLURM_PROCID in os.environ and SLURM_NTASKS in os.environ:  # run on the slurm
 | |
|         proc_id, ntasks = int(os.environ[SLURM_PROCID]), int(os.environ[SLURM_NTASKS])
 | |
|         assert 0 <= proc_id < ntasks, "invalid proc_id {:} vs ntasks {:}".format(
 | |
|             proc_id, ntasks
 | |
|         )
 | |
|         scales = [int(float(i) / ntasks * len(all_indexes)) for i in range(ntasks)] + [
 | |
|             len(all_indexes)
 | |
|         ]
 | |
|         per_job = []
 | |
|         for i in range(ntasks):
 | |
|             xs, xe = min(max(scales[i], 0), len(all_indexes) - 1), min(
 | |
|                 max(scales[i + 1] - 1, 0), len(all_indexes) - 1
 | |
|             )
 | |
|             per_job.append((xs, xe))
 | |
|         for i, srange in enumerate(per_job):
 | |
|             print("  -->> {:2d}/{:02d} : {:}".format(i, ntasks, srange))
 | |
|         current_range = per_job[proc_id]
 | |
|         all_indexes = [
 | |
|             all_indexes[i] for i in range(current_range[0], current_range[1] + 1)
 | |
|         ]
 | |
|         # set the device id
 | |
|         device = proc_id % torch.cuda.device_count()
 | |
|         torch.cuda.set_device(device)
 | |
|         print("  set the device id = {:}".format(device))
 | |
|     print(
 | |
|         "{:} [FILTER-INDEXES] : after filtering there are {:} architectures in total".format(
 | |
|             time_string(), len(all_indexes)
 | |
|         )
 | |
|     )
 | |
|     return all_indexes
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser(
 | |
|         description="NATS-Bench (size search space)",
 | |
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter,
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--mode",
 | |
|         type=str,
 | |
|         required=True,
 | |
|         choices=["new", "cover"],
 | |
|         help="The script mode.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--save_dir",
 | |
|         type=str,
 | |
|         default="output/NATS-Bench-size",
 | |
|         help="Folder to save checkpoints and log.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--candidateC",
 | |
|         type=int,
 | |
|         nargs="+",
 | |
|         default=[8, 16, 24, 32, 40, 48, 56, 64],
 | |
|         help=".",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--num_layers", type=int, default=5, help="The number of layers in a network."
 | |
|     )
 | |
|     parser.add_argument("--check_N", type=int, default=32768, help="For safety.")
 | |
|     # use for train the model
 | |
|     parser.add_argument(
 | |
|         "--workers",
 | |
|         type=int,
 | |
|         default=8,
 | |
|         help="The number of data loading workers (default: 2)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--srange", type=str, required=True, help="The range of models to be evaluated"
 | |
|     )
 | |
|     parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.")
 | |
|     parser.add_argument(
 | |
|         "--xpaths", type=str, nargs="+", help="The root path for this dataset."
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--splits", type=int, nargs="+", help="The root path for this dataset."
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--hyper",
 | |
|         type=str,
 | |
|         default="12",
 | |
|         choices=["01", "12", "90"],
 | |
|         help="The tag for hyper-parameters.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--seeds", type=int, nargs="+", help="The range of models to be evaluated"
 | |
|     )
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     nets = traverse_net(args.candidateC, args.num_layers)
 | |
|     if len(nets) != args.check_N:
 | |
|         raise ValueError(
 | |
|             "Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N)
 | |
|         )
 | |
| 
 | |
|     opt_config = "./configs/nas-benchmark/hyper-opts/{:}E.config".format(args.hyper)
 | |
|     if not os.path.isfile(opt_config):
 | |
|         raise ValueError("{:} is not a file.".format(opt_config))
 | |
|     save_dir = Path(args.save_dir) / "raw-data-{:}".format(args.hyper)
 | |
|     save_dir.mkdir(parents=True, exist_ok=True)
 | |
|     to_evaluate_indexes = split_str2indexes(args.srange, args.check_N, 5)
 | |
| 
 | |
|     if not len(args.seeds):
 | |
|         raise ValueError("invalid length of seeds args: {:}".format(args.seeds))
 | |
|     if not (len(args.datasets) == len(args.xpaths) == len(args.splits)):
 | |
|         raise ValueError(
 | |
|             "invalid infos : {:} vs {:} vs {:}".format(
 | |
|                 len(args.datasets), len(args.xpaths), len(args.splits)
 | |
|             )
 | |
|         )
 | |
|     if args.workers <= 0:
 | |
|         raise ValueError("invalid number of workers : {:}".format(args.workers))
 | |
| 
 | |
|     target_indexes = filter_indexes(
 | |
|         to_evaluate_indexes, args.mode, save_dir, args.seeds
 | |
|     )
 | |
| 
 | |
|     assert torch.cuda.is_available(), "CUDA is not available."
 | |
|     torch.backends.cudnn.enabled = True
 | |
|     torch.backends.cudnn.deterministic = True
 | |
|     torch.set_num_threads(args.workers)
 | |
| 
 | |
|     main(
 | |
|         save_dir,
 | |
|         args.workers,
 | |
|         args.datasets,
 | |
|         args.xpaths,
 | |
|         args.splits,
 | |
|         tuple(args.seeds),
 | |
|         nets,
 | |
|         opt_config,
 | |
|         target_indexes,
 | |
|         args.mode == "cover",
 | |
|     )
 |