389 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			389 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##############################################################################
 | |
| # NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size #
 | |
| ##############################################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08                          #
 | |
| ##############################################################################
 | |
| # This file is used to re-orangize all checkpoints (created by main-sss.py)  #
 | |
| # into a single benchmark file. Besides, for each trial, we will merge the   #
 | |
| # information of all its trials into a single file.                          #
 | |
| #                                                                            #
 | |
| # Usage:                                                                     #
 | |
| # python exps/NATS-Bench/sss-collect.py                                      #
 | |
| ##############################################################################
 | |
| import os, re, sys, time, shutil, argparse, collections
 | |
| import torch
 | |
| from tqdm import tqdm
 | |
| from pathlib import Path
 | |
| from collections import defaultdict, OrderedDict
 | |
| from typing import Dict, Any, Text, List
 | |
| 
 | |
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
 | |
| if str(lib_dir) not in sys.path:
 | |
|     sys.path.insert(0, str(lib_dir))
 | |
| from log_utils import AverageMeter, time_string, convert_secs2time
 | |
| from config_utils import dict2config
 | |
| from models import CellStructure, get_cell_based_tiny_net
 | |
| from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
 | |
| from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
 | |
| from utils import get_md5_file
 | |
| 
 | |
| 
 | |
| NATS_SSS_BASE_NAME = "NATS-sss-v1_0"  # 2020.08.28
 | |
| 
 | |
| 
 | |
| def account_one_arch(
 | |
|     arch_index: int, arch_str: Text, checkpoints: List[Text], datasets: List[Text]
 | |
| ) -> ArchResults:
 | |
|     information = ArchResults(arch_index, arch_str)
 | |
| 
 | |
|     for checkpoint_path in checkpoints:
 | |
|         try:
 | |
|             checkpoint = torch.load(checkpoint_path, map_location="cpu")
 | |
|         except:
 | |
|             raise ValueError(
 | |
|                 "This checkpoint failed to be loaded : {:}".format(checkpoint_path)
 | |
|             )
 | |
|         used_seed = checkpoint_path.name.split("-")[-1].split(".")[0]
 | |
|         ok_dataset = 0
 | |
|         for dataset in datasets:
 | |
|             if dataset not in checkpoint:
 | |
|                 print(
 | |
|                     "Can not find {:} in arch-{:} from {:}".format(
 | |
|                         dataset, arch_index, checkpoint_path
 | |
|                     )
 | |
|                 )
 | |
|                 continue
 | |
|             else:
 | |
|                 ok_dataset += 1
 | |
|             results = checkpoint[dataset]
 | |
|             assert results[
 | |
|                 "finish-train"
 | |
|             ], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format(
 | |
|                 arch_index, used_seed, dataset, checkpoint_path
 | |
|             )
 | |
|             arch_config = {
 | |
|                 "name": "infer.shape.tiny",
 | |
|                 "channels": arch_str,
 | |
|                 "arch_str": arch_str,
 | |
|                 "genotype": results["arch_config"]["genotype"],
 | |
|                 "class_num": results["arch_config"]["num_classes"],
 | |
|             }
 | |
|             xresult = ResultsCount(
 | |
|                 dataset,
 | |
|                 results["net_state_dict"],
 | |
|                 results["train_acc1es"],
 | |
|                 results["train_losses"],
 | |
|                 results["param"],
 | |
|                 results["flop"],
 | |
|                 arch_config,
 | |
|                 used_seed,
 | |
|                 results["total_epoch"],
 | |
|                 None,
 | |
|             )
 | |
|             xresult.update_train_info(
 | |
|                 results["train_acc1es"],
 | |
|                 results["train_acc5es"],
 | |
|                 results["train_losses"],
 | |
|                 results["train_times"],
 | |
|             )
 | |
|             xresult.update_eval(
 | |
|                 results["valid_acc1es"], results["valid_losses"], results["valid_times"]
 | |
|             )
 | |
|             information.update(dataset, int(used_seed), xresult)
 | |
|         if ok_dataset < len(datasets):
 | |
|             raise ValueError(
 | |
|                 "{:} does find enought data : {:} vs {:}".format(
 | |
|                     checkpoint_path, ok_dataset, len(datasets)
 | |
|                 )
 | |
|             )
 | |
|     return information
 | |
| 
 | |
| 
 | |
| def correct_time_related_info(hp2info: Dict[Text, ArchResults]):
 | |
|     # calibrate the latency based on the number of epochs = 01, since they are trained on the same machine.
 | |
|     x1 = hp2info["01"].get_metrics("cifar10-valid", "x-valid")["all_time"] / 98
 | |
|     x2 = hp2info["01"].get_metrics("cifar10-valid", "ori-test")["all_time"] / 40
 | |
|     cifar010_latency = (x1 + x2) / 2
 | |
|     for hp, arch_info in hp2info.items():
 | |
|         arch_info.reset_latency("cifar10-valid", None, cifar010_latency)
 | |
|         arch_info.reset_latency("cifar10", None, cifar010_latency)
 | |
|     # hp2info['01'].get_latency('cifar10')
 | |
| 
 | |
|     x1 = hp2info["01"].get_metrics("cifar100", "ori-test")["all_time"] / 40
 | |
|     x2 = hp2info["01"].get_metrics("cifar100", "x-test")["all_time"] / 20
 | |
|     x3 = hp2info["01"].get_metrics("cifar100", "x-valid")["all_time"] / 20
 | |
|     cifar100_latency = (x1 + x2 + x3) / 3
 | |
|     for hp, arch_info in hp2info.items():
 | |
|         arch_info.reset_latency("cifar100", None, cifar100_latency)
 | |
| 
 | |
|     x1 = hp2info["01"].get_metrics("ImageNet16-120", "ori-test")["all_time"] / 24
 | |
|     x2 = hp2info["01"].get_metrics("ImageNet16-120", "x-test")["all_time"] / 12
 | |
|     x3 = hp2info["01"].get_metrics("ImageNet16-120", "x-valid")["all_time"] / 12
 | |
|     image_latency = (x1 + x2 + x3) / 3
 | |
|     for hp, arch_info in hp2info.items():
 | |
|         arch_info.reset_latency("ImageNet16-120", None, image_latency)
 | |
| 
 | |
|     # CIFAR10 VALID
 | |
|     train_per_epoch_time = list(
 | |
|         hp2info["01"].query("cifar10-valid", 777).train_times.values()
 | |
|     )
 | |
|     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
 | |
|     eval_ori_test_time, eval_x_valid_time = [], []
 | |
|     for key, value in hp2info["01"].query("cifar10-valid", 777).eval_times.items():
 | |
|         if key.startswith("ori-test@"):
 | |
|             eval_ori_test_time.append(value)
 | |
|         elif key.startswith("x-valid@"):
 | |
|             eval_x_valid_time.append(value)
 | |
|         else:
 | |
|             raise ValueError("-- {:} --".format(key))
 | |
|     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
 | |
|     eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time)
 | |
|     for hp, arch_info in hp2info.items():
 | |
|         arch_info.reset_pseudo_train_times("cifar10-valid", None, train_per_epoch_time)
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "cifar10-valid", None, "x-valid", eval_x_valid_time
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "cifar10-valid", None, "ori-test", eval_ori_test_time
 | |
|         )
 | |
| 
 | |
|     # CIFAR10
 | |
|     train_per_epoch_time = list(
 | |
|         hp2info["01"].query("cifar10", 777).train_times.values()
 | |
|     )
 | |
|     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
 | |
|     eval_ori_test_time = []
 | |
|     for key, value in hp2info["01"].query("cifar10", 777).eval_times.items():
 | |
|         if key.startswith("ori-test@"):
 | |
|             eval_ori_test_time.append(value)
 | |
|         else:
 | |
|             raise ValueError("-- {:} --".format(key))
 | |
|     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
 | |
|     for hp, arch_info in hp2info.items():
 | |
|         arch_info.reset_pseudo_train_times("cifar10", None, train_per_epoch_time)
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "cifar10", None, "ori-test", eval_ori_test_time
 | |
|         )
 | |
| 
 | |
|     # CIFAR100
 | |
|     train_per_epoch_time = list(
 | |
|         hp2info["01"].query("cifar100", 777).train_times.values()
 | |
|     )
 | |
|     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
 | |
|     eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], []
 | |
|     for key, value in hp2info["01"].query("cifar100", 777).eval_times.items():
 | |
|         if key.startswith("ori-test@"):
 | |
|             eval_ori_test_time.append(value)
 | |
|         elif key.startswith("x-valid@"):
 | |
|             eval_x_valid_time.append(value)
 | |
|         elif key.startswith("x-test@"):
 | |
|             eval_x_test_time.append(value)
 | |
|         else:
 | |
|             raise ValueError("-- {:} --".format(key))
 | |
|     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
 | |
|     eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time)
 | |
|     eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time)
 | |
|     for hp, arch_info in hp2info.items():
 | |
|         arch_info.reset_pseudo_train_times("cifar100", None, train_per_epoch_time)
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "cifar100", None, "x-valid", eval_x_valid_time
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times("cifar100", None, "x-test", eval_x_test_time)
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "cifar100", None, "ori-test", eval_ori_test_time
 | |
|         )
 | |
| 
 | |
|     # ImageNet16-120
 | |
|     train_per_epoch_time = list(
 | |
|         hp2info["01"].query("ImageNet16-120", 777).train_times.values()
 | |
|     )
 | |
|     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
 | |
|     eval_ori_test_time, eval_x_valid_time, eval_x_test_time = [], [], []
 | |
|     for key, value in hp2info["01"].query("ImageNet16-120", 777).eval_times.items():
 | |
|         if key.startswith("ori-test@"):
 | |
|             eval_ori_test_time.append(value)
 | |
|         elif key.startswith("x-valid@"):
 | |
|             eval_x_valid_time.append(value)
 | |
|         elif key.startswith("x-test@"):
 | |
|             eval_x_test_time.append(value)
 | |
|         else:
 | |
|             raise ValueError("-- {:} --".format(key))
 | |
|     eval_ori_test_time = sum(eval_ori_test_time) / len(eval_ori_test_time)
 | |
|     eval_x_valid_time = sum(eval_x_valid_time) / len(eval_x_valid_time)
 | |
|     eval_x_test_time = sum(eval_x_test_time) / len(eval_x_test_time)
 | |
|     for hp, arch_info in hp2info.items():
 | |
|         arch_info.reset_pseudo_train_times("ImageNet16-120", None, train_per_epoch_time)
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "ImageNet16-120", None, "x-valid", eval_x_valid_time
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "ImageNet16-120", None, "x-test", eval_x_test_time
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "ImageNet16-120", None, "ori-test", eval_ori_test_time
 | |
|         )
 | |
|     return hp2info
 | |
| 
 | |
| 
 | |
| def simplify(save_dir, save_name, nets, total):
 | |
| 
 | |
|     hps, seeds = ["01", "12", "90"], set()
 | |
|     for hp in hps:
 | |
|         sub_save_dir = save_dir / "raw-data-{:}".format(hp)
 | |
|         ckps = sorted(list(sub_save_dir.glob("arch-*-seed-*.pth")))
 | |
|         seed2names = defaultdict(list)
 | |
|         for ckp in ckps:
 | |
|             parts = re.split("-|\.", ckp.name)
 | |
|             seed2names[parts[3]].append(ckp.name)
 | |
|         print("DIR : {:}".format(sub_save_dir))
 | |
|         nums = []
 | |
|         for seed, xlist in seed2names.items():
 | |
|             seeds.add(seed)
 | |
|             nums.append(len(xlist))
 | |
|             print("  [seed={:}] there are {:} checkpoints.".format(seed, len(xlist)))
 | |
|         assert (
 | |
|             len(nets) == total == max(nums)
 | |
|         ), "there are some missed files : {:} vs {:}".format(max(nums), total)
 | |
|     print("{:} start simplify the checkpoint.".format(time_string()))
 | |
| 
 | |
|     datasets = ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120")
 | |
| 
 | |
|     # Create the directory to save the processed data
 | |
|     # full_save_dir contains all benchmark files with trained weights.
 | |
|     # simplify_save_dir contains all benchmark files without trained weights.
 | |
|     full_save_dir = save_dir / (save_name + "-FULL")
 | |
|     simple_save_dir = save_dir / (save_name + "-SIMPLIFY")
 | |
|     full_save_dir.mkdir(parents=True, exist_ok=True)
 | |
|     simple_save_dir.mkdir(parents=True, exist_ok=True)
 | |
|     # all data in memory
 | |
|     arch2infos, evaluated_indexes = dict(), set()
 | |
|     end_time, arch_time = time.time(), AverageMeter()
 | |
| 
 | |
|     for index in tqdm(range(total)):
 | |
|         arch_str = nets[index]
 | |
|         hp2info = OrderedDict()
 | |
| 
 | |
|         full_save_path = full_save_dir / "{:06d}.pickle".format(index)
 | |
|         simple_save_path = simple_save_dir / "{:06d}.pickle".format(index)
 | |
| 
 | |
|         for hp in hps:
 | |
|             sub_save_dir = save_dir / "raw-data-{:}".format(hp)
 | |
|             ckps = [
 | |
|                 sub_save_dir / "arch-{:06d}-seed-{:}.pth".format(index, seed)
 | |
|                 for seed in seeds
 | |
|             ]
 | |
|             ckps = [x for x in ckps if x.exists()]
 | |
|             if len(ckps) == 0:
 | |
|                 raise ValueError("Invalid data : index={:}, hp={:}".format(index, hp))
 | |
| 
 | |
|             arch_info = account_one_arch(index, arch_str, ckps, datasets)
 | |
|             hp2info[hp] = arch_info
 | |
| 
 | |
|         hp2info = correct_time_related_info(hp2info)
 | |
|         evaluated_indexes.add(index)
 | |
| 
 | |
|         hp2info["01"].clear_params()  # to save some spaces...
 | |
|         to_save_data = OrderedDict(
 | |
|             {
 | |
|                 "01": hp2info["01"].state_dict(),
 | |
|                 "12": hp2info["12"].state_dict(),
 | |
|                 "90": hp2info["90"].state_dict(),
 | |
|             }
 | |
|         )
 | |
|         pickle_save(to_save_data, str(full_save_path))
 | |
| 
 | |
|         for hp in hps:
 | |
|             hp2info[hp].clear_params()
 | |
|         to_save_data = OrderedDict(
 | |
|             {
 | |
|                 "01": hp2info["01"].state_dict(),
 | |
|                 "12": hp2info["12"].state_dict(),
 | |
|                 "90": hp2info["90"].state_dict(),
 | |
|             }
 | |
|         )
 | |
|         pickle_save(to_save_data, str(simple_save_path))
 | |
|         arch2infos[index] = to_save_data
 | |
|         # measure elapsed time
 | |
|         arch_time.update(time.time() - end_time)
 | |
|         end_time = time.time()
 | |
|         need_time = "{:}".format(
 | |
|             convert_secs2time(arch_time.avg * (total - index - 1), True)
 | |
|         )
 | |
|         # print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time))
 | |
|     print("{:} {:} done.".format(time_string(), save_name))
 | |
|     final_infos = {
 | |
|         "meta_archs": nets,
 | |
|         "total_archs": total,
 | |
|         "arch2infos": arch2infos,
 | |
|         "evaluated_indexes": evaluated_indexes,
 | |
|     }
 | |
|     save_file_name = save_dir / "{:}.pickle".format(save_name)
 | |
|     pickle_save(final_infos, str(save_file_name))
 | |
|     # move the benchmark file to a new path
 | |
|     hd5sum = get_md5_file(str(save_file_name) + ".pbz2")
 | |
|     hd5_file_name = save_dir / "{:}-{:}.pickle.pbz2".format(NATS_SSS_BASE_NAME, hd5sum)
 | |
|     shutil.move(str(save_file_name) + ".pbz2", hd5_file_name)
 | |
|     print(
 | |
|         "Save {:} / {:} architecture results into {:} -> {:}.".format(
 | |
|             len(evaluated_indexes), total, save_file_name, hd5_file_name
 | |
|         )
 | |
|     )
 | |
|     # move the directory to a new path
 | |
|     hd5_full_save_dir = save_dir / "{:}-{:}-full".format(NATS_SSS_BASE_NAME, hd5sum)
 | |
|     hd5_simple_save_dir = save_dir / "{:}-{:}-simple".format(NATS_SSS_BASE_NAME, hd5sum)
 | |
|     shutil.move(full_save_dir, hd5_full_save_dir)
 | |
|     shutil.move(simple_save_dir, hd5_simple_save_dir)
 | |
|     # save the meta information for simple and full
 | |
|     final_infos["arch2infos"] = None
 | |
|     final_infos["evaluated_indexes"] = set()
 | |
|     pickle_save(final_infos, str(hd5_full_save_dir / "meta.pickle"))
 | |
|     pickle_save(final_infos, str(hd5_simple_save_dir / "meta.pickle"))
 | |
| 
 | |
| 
 | |
| def traverse_net(candidates: List[int], N: int):
 | |
|     nets = [""]
 | |
|     for i in range(N):
 | |
|         new_nets = []
 | |
|         for net in nets:
 | |
|             for C in candidates:
 | |
|                 new_nets.append(str(C) if net == "" else "{:}:{:}".format(net, C))
 | |
|         nets = new_nets
 | |
|     return nets
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser(
 | |
|         description="NATS-Bench (size search space)",
 | |
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter,
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--base_save_dir",
 | |
|         type=str,
 | |
|         default="./output/NATS-Bench-size",
 | |
|         help="The base-name of folder to save checkpoints and log.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--candidateC",
 | |
|         type=int,
 | |
|         nargs="+",
 | |
|         default=[8, 16, 24, 32, 40, 48, 56, 64],
 | |
|         help=".",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--num_layers", type=int, default=5, help="The number of layers in a network."
 | |
|     )
 | |
|     parser.add_argument("--check_N", type=int, default=32768, help="For safety.")
 | |
|     parser.add_argument(
 | |
|         "--save_name", type=str, default="process", help="The save directory."
 | |
|     )
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     nets = traverse_net(args.candidateC, args.num_layers)
 | |
|     if len(nets) != args.check_N:
 | |
|         raise ValueError(
 | |
|             "Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N)
 | |
|         )
 | |
| 
 | |
|     save_dir = Path(args.base_save_dir)
 | |
|     simplify(save_dir, args.save_name, nets, args.check_N)
 |