462 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			462 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##############################################################################
 | |
| # NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size #
 | |
| ##############################################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08                          #
 | |
| ##############################################################################
 | |
| # This file is used to re-orangize all checkpoints (created by main-tss.py)  #
 | |
| # into a single benchmark file. Besides, for each trial, we will merge the   #
 | |
| # information of all its trials into a single file.                          #
 | |
| #                                                                            #
 | |
| # Usage:                                                                     #
 | |
| # python exps/NATS-Bench/tss-collect.py                                      #
 | |
| ##############################################################################
 | |
| import os, re, sys, time, shutil, random, argparse, collections
 | |
| import numpy as np
 | |
| from copy import deepcopy
 | |
| import torch
 | |
| from tqdm import tqdm
 | |
| from pathlib import Path
 | |
| from collections import defaultdict, OrderedDict
 | |
| from typing import Dict, Any, Text, List
 | |
| 
 | |
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
 | |
| if str(lib_dir) not in sys.path:
 | |
|     sys.path.insert(0, str(lib_dir))
 | |
| from log_utils import AverageMeter, time_string, convert_secs2time
 | |
| from config_utils import load_config, dict2config
 | |
| from datasets import get_datasets
 | |
| from models import CellStructure, get_cell_based_tiny_net, get_search_spaces
 | |
| from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount
 | |
| from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
 | |
| from utils import get_md5_file
 | |
| from nas_201_api import NASBench201API
 | |
| 
 | |
| 
 | |
| api = NASBench201API(
 | |
|     "{:}/.torch/NAS-Bench-201-v1_0-e61699.pth".format(os.environ["HOME"])
 | |
| )
 | |
| 
 | |
| NATS_TSS_BASE_NAME = "NATS-tss-v1_0"  # 2020.08.28
 | |
| 
 | |
| 
 | |
| def create_result_count(
 | |
|     used_seed: int,
 | |
|     dataset: Text,
 | |
|     arch_config: Dict[Text, Any],
 | |
|     results: Dict[Text, Any],
 | |
|     dataloader_dict: Dict[Text, Any],
 | |
| ) -> ResultsCount:
 | |
|     xresult = ResultsCount(
 | |
|         dataset,
 | |
|         results["net_state_dict"],
 | |
|         results["train_acc1es"],
 | |
|         results["train_losses"],
 | |
|         results["param"],
 | |
|         results["flop"],
 | |
|         arch_config,
 | |
|         used_seed,
 | |
|         results["total_epoch"],
 | |
|         None,
 | |
|     )
 | |
|     net_config = dict2config(
 | |
|         {
 | |
|             "name": "infer.tiny",
 | |
|             "C": arch_config["channel"],
 | |
|             "N": arch_config["num_cells"],
 | |
|             "genotype": CellStructure.str2structure(arch_config["arch_str"]),
 | |
|             "num_classes": arch_config["class_num"],
 | |
|         },
 | |
|         None,
 | |
|     )
 | |
|     if "train_times" in results:  # new version
 | |
|         xresult.update_train_info(
 | |
|             results["train_acc1es"],
 | |
|             results["train_acc5es"],
 | |
|             results["train_losses"],
 | |
|             results["train_times"],
 | |
|         )
 | |
|         xresult.update_eval(
 | |
|             results["valid_acc1es"], results["valid_losses"], results["valid_times"]
 | |
|         )
 | |
|     else:
 | |
|         network = get_cell_based_tiny_net(net_config)
 | |
|         network.load_state_dict(xresult.get_net_param())
 | |
|         if dataset == "cifar10-valid":
 | |
|             xresult.update_OLD_eval(
 | |
|                 "x-valid", results["valid_acc1es"], results["valid_losses"]
 | |
|             )
 | |
|             loss, top1, top5, latencies = pure_evaluate(
 | |
|                 dataloader_dict["{:}@{:}".format("cifar10", "test")], network.cuda()
 | |
|             )
 | |
|             xresult.update_OLD_eval(
 | |
|                 "ori-test",
 | |
|                 {results["total_epoch"] - 1: top1},
 | |
|                 {results["total_epoch"] - 1: loss},
 | |
|             )
 | |
|             xresult.update_latency(latencies)
 | |
|         elif dataset == "cifar10":
 | |
|             xresult.update_OLD_eval(
 | |
|                 "ori-test", results["valid_acc1es"], results["valid_losses"]
 | |
|             )
 | |
|             loss, top1, top5, latencies = pure_evaluate(
 | |
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda()
 | |
|             )
 | |
|             xresult.update_latency(latencies)
 | |
|         elif dataset == "cifar100" or dataset == "ImageNet16-120":
 | |
|             xresult.update_OLD_eval(
 | |
|                 "ori-test", results["valid_acc1es"], results["valid_losses"]
 | |
|             )
 | |
|             loss, top1, top5, latencies = pure_evaluate(
 | |
|                 dataloader_dict["{:}@{:}".format(dataset, "valid")], network.cuda()
 | |
|             )
 | |
|             xresult.update_OLD_eval(
 | |
|                 "x-valid",
 | |
|                 {results["total_epoch"] - 1: top1},
 | |
|                 {results["total_epoch"] - 1: loss},
 | |
|             )
 | |
|             loss, top1, top5, latencies = pure_evaluate(
 | |
|                 dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda()
 | |
|             )
 | |
|             xresult.update_OLD_eval(
 | |
|                 "x-test",
 | |
|                 {results["total_epoch"] - 1: top1},
 | |
|                 {results["total_epoch"] - 1: loss},
 | |
|             )
 | |
|             xresult.update_latency(latencies)
 | |
|         else:
 | |
|             raise ValueError("invalid dataset name : {:}".format(dataset))
 | |
|     return xresult
 | |
| 
 | |
| 
 | |
| def account_one_arch(arch_index, arch_str, checkpoints, datasets, dataloader_dict):
 | |
|     information = ArchResults(arch_index, arch_str)
 | |
| 
 | |
|     for checkpoint_path in checkpoints:
 | |
|         checkpoint = torch.load(checkpoint_path, map_location="cpu")
 | |
|         used_seed = checkpoint_path.name.split("-")[-1].split(".")[0]
 | |
|         ok_dataset = 0
 | |
|         for dataset in datasets:
 | |
|             if dataset not in checkpoint:
 | |
|                 print(
 | |
|                     "Can not find {:} in arch-{:} from {:}".format(
 | |
|                         dataset, arch_index, checkpoint_path
 | |
|                     )
 | |
|                 )
 | |
|                 continue
 | |
|             else:
 | |
|                 ok_dataset += 1
 | |
|             results = checkpoint[dataset]
 | |
|             assert results[
 | |
|                 "finish-train"
 | |
|             ], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format(
 | |
|                 arch_index, used_seed, dataset, checkpoint_path
 | |
|             )
 | |
|             arch_config = {
 | |
|                 "channel": results["channel"],
 | |
|                 "num_cells": results["num_cells"],
 | |
|                 "arch_str": arch_str,
 | |
|                 "class_num": results["config"]["class_num"],
 | |
|             }
 | |
| 
 | |
|             xresult = create_result_count(
 | |
|                 used_seed, dataset, arch_config, results, dataloader_dict
 | |
|             )
 | |
|             information.update(dataset, int(used_seed), xresult)
 | |
|         if ok_dataset == 0:
 | |
|             raise ValueError("{:} does not find any data".format(checkpoint_path))
 | |
|     return information
 | |
| 
 | |
| 
 | |
| def correct_time_related_info(arch_index: int, arch_infos: Dict[Text, ArchResults]):
 | |
|     # calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth
 | |
|     cifar010_latency = (
 | |
|         api.get_latency(arch_index, "cifar10-valid", hp="200")
 | |
|         + api.get_latency(arch_index, "cifar10", hp="200")
 | |
|     ) / 2
 | |
|     cifar100_latency = api.get_latency(arch_index, "cifar100", hp="200")
 | |
|     image_latency = api.get_latency(arch_index, "ImageNet16-120", hp="200")
 | |
|     for hp, arch_info in arch_infos.items():
 | |
|         arch_info.reset_latency("cifar10-valid", None, cifar010_latency)
 | |
|         arch_info.reset_latency("cifar10", None, cifar010_latency)
 | |
|         arch_info.reset_latency("cifar100", None, cifar100_latency)
 | |
|         arch_info.reset_latency("ImageNet16-120", None, image_latency)
 | |
| 
 | |
|     train_per_epoch_time = list(
 | |
|         arch_infos["12"].query("cifar10-valid", 777).train_times.values()
 | |
|     )
 | |
|     train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
 | |
|     eval_ori_test_time, eval_x_valid_time = [], []
 | |
|     for key, value in arch_infos["12"].query("cifar10-valid", 777).eval_times.items():
 | |
|         if key.startswith("ori-test@"):
 | |
|             eval_ori_test_time.append(value)
 | |
|         elif key.startswith("x-valid@"):
 | |
|             eval_x_valid_time.append(value)
 | |
|         else:
 | |
|             raise ValueError("-- {:} --".format(key))
 | |
|     eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float(
 | |
|         np.mean(eval_x_valid_time)
 | |
|     )
 | |
|     nums = {
 | |
|         "ImageNet16-120-train": 151700,
 | |
|         "ImageNet16-120-valid": 3000,
 | |
|         "ImageNet16-120-test": 6000,
 | |
|         "cifar10-valid-train": 25000,
 | |
|         "cifar10-valid-valid": 25000,
 | |
|         "cifar10-train": 50000,
 | |
|         "cifar10-test": 10000,
 | |
|         "cifar100-train": 50000,
 | |
|         "cifar100-test": 10000,
 | |
|         "cifar100-valid": 5000,
 | |
|     }
 | |
|     eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / (
 | |
|         nums["cifar10-valid-valid"] + nums["cifar10-test"]
 | |
|     )
 | |
|     for hp, arch_info in arch_infos.items():
 | |
|         arch_info.reset_pseudo_train_times(
 | |
|             "cifar10-valid",
 | |
|             None,
 | |
|             train_per_epoch_time
 | |
|             / nums["cifar10-valid-train"]
 | |
|             * nums["cifar10-valid-train"],
 | |
|         )
 | |
|         arch_info.reset_pseudo_train_times(
 | |
|             "cifar10",
 | |
|             None,
 | |
|             train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar10-train"],
 | |
|         )
 | |
|         arch_info.reset_pseudo_train_times(
 | |
|             "cifar100",
 | |
|             None,
 | |
|             train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar100-train"],
 | |
|         )
 | |
|         arch_info.reset_pseudo_train_times(
 | |
|             "ImageNet16-120",
 | |
|             None,
 | |
|             train_per_epoch_time
 | |
|             / nums["cifar10-valid-train"]
 | |
|             * nums["ImageNet16-120-train"],
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "cifar10-valid",
 | |
|             None,
 | |
|             "x-valid",
 | |
|             eval_per_sample * nums["cifar10-valid-valid"],
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "cifar10-valid", None, "ori-test", eval_per_sample * nums["cifar10-test"]
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "cifar10", None, "ori-test", eval_per_sample * nums["cifar10-test"]
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "cifar100", None, "x-valid", eval_per_sample * nums["cifar100-valid"]
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "cifar100", None, "x-test", eval_per_sample * nums["cifar100-valid"]
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "cifar100", None, "ori-test", eval_per_sample * nums["cifar100-test"]
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "ImageNet16-120",
 | |
|             None,
 | |
|             "x-valid",
 | |
|             eval_per_sample * nums["ImageNet16-120-valid"],
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "ImageNet16-120",
 | |
|             None,
 | |
|             "x-test",
 | |
|             eval_per_sample * nums["ImageNet16-120-valid"],
 | |
|         )
 | |
|         arch_info.reset_pseudo_eval_times(
 | |
|             "ImageNet16-120",
 | |
|             None,
 | |
|             "ori-test",
 | |
|             eval_per_sample * nums["ImageNet16-120-test"],
 | |
|         )
 | |
|     return arch_infos
 | |
| 
 | |
| 
 | |
| def simplify(save_dir, save_name, nets, total, sup_config):
 | |
|     dataloader_dict = get_nas_bench_loaders(6)
 | |
|     hps, seeds = ["12", "200"], set()
 | |
|     for hp in hps:
 | |
|         sub_save_dir = save_dir / "raw-data-{:}".format(hp)
 | |
|         ckps = sorted(list(sub_save_dir.glob("arch-*-seed-*.pth")))
 | |
|         seed2names = defaultdict(list)
 | |
|         for ckp in ckps:
 | |
|             parts = re.split("-|\.", ckp.name)
 | |
|             seed2names[parts[3]].append(ckp.name)
 | |
|         print("DIR : {:}".format(sub_save_dir))
 | |
|         nums = []
 | |
|         for seed, xlist in seed2names.items():
 | |
|             seeds.add(seed)
 | |
|             nums.append(len(xlist))
 | |
|             print("  [seed={:}] there are {:} checkpoints.".format(seed, len(xlist)))
 | |
|         assert (
 | |
|             len(nets) == total == max(nums)
 | |
|         ), "there are some missed files : {:} vs {:}".format(max(nums), total)
 | |
|     print("{:} start simplify the checkpoint.".format(time_string()))
 | |
| 
 | |
|     datasets = ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120")
 | |
| 
 | |
|     # Create the directory to save the processed data
 | |
|     # full_save_dir contains all benchmark files with trained weights.
 | |
|     # simplify_save_dir contains all benchmark files without trained weights.
 | |
|     full_save_dir = save_dir / (save_name + "-FULL")
 | |
|     simple_save_dir = save_dir / (save_name + "-SIMPLIFY")
 | |
|     full_save_dir.mkdir(parents=True, exist_ok=True)
 | |
|     simple_save_dir.mkdir(parents=True, exist_ok=True)
 | |
|     # all data in memory
 | |
|     arch2infos, evaluated_indexes = dict(), set()
 | |
|     end_time, arch_time = time.time(), AverageMeter()
 | |
|     # save the meta information
 | |
|     temp_final_infos = {
 | |
|         "meta_archs": nets,
 | |
|         "total_archs": total,
 | |
|         "arch2infos": None,
 | |
|         "evaluated_indexes": set(),
 | |
|     }
 | |
|     pickle_save(temp_final_infos, str(full_save_dir / "meta.pickle"))
 | |
|     pickle_save(temp_final_infos, str(simple_save_dir / "meta.pickle"))
 | |
| 
 | |
|     for index in tqdm(range(total)):
 | |
|         arch_str = nets[index]
 | |
|         hp2info = OrderedDict()
 | |
| 
 | |
|         full_save_path = full_save_dir / "{:06d}.pickle".format(index)
 | |
|         simple_save_path = simple_save_dir / "{:06d}.pickle".format(index)
 | |
|         for hp in hps:
 | |
|             sub_save_dir = save_dir / "raw-data-{:}".format(hp)
 | |
|             ckps = [
 | |
|                 sub_save_dir / "arch-{:06d}-seed-{:}.pth".format(index, seed)
 | |
|                 for seed in seeds
 | |
|             ]
 | |
|             ckps = [x for x in ckps if x.exists()]
 | |
|             if len(ckps) == 0:
 | |
|                 raise ValueError("Invalid data : index={:}, hp={:}".format(index, hp))
 | |
| 
 | |
|             arch_info = account_one_arch(
 | |
|                 index, arch_str, ckps, datasets, dataloader_dict
 | |
|             )
 | |
|             hp2info[hp] = arch_info
 | |
| 
 | |
|         hp2info = correct_time_related_info(index, hp2info)
 | |
|         evaluated_indexes.add(index)
 | |
| 
 | |
|         to_save_data = OrderedDict(
 | |
|             {"12": hp2info["12"].state_dict(), "200": hp2info["200"].state_dict()}
 | |
|         )
 | |
|         pickle_save(to_save_data, str(full_save_path))
 | |
| 
 | |
|         for hp in hps:
 | |
|             hp2info[hp].clear_params()
 | |
|         to_save_data = OrderedDict(
 | |
|             {"12": hp2info["12"].state_dict(), "200": hp2info["200"].state_dict()}
 | |
|         )
 | |
|         pickle_save(to_save_data, str(simple_save_path))
 | |
|         arch2infos[index] = to_save_data
 | |
|         # measure elapsed time
 | |
|         arch_time.update(time.time() - end_time)
 | |
|         end_time = time.time()
 | |
|         need_time = "{:}".format(
 | |
|             convert_secs2time(arch_time.avg * (total - index - 1), True)
 | |
|         )
 | |
|         # print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time))
 | |
|     print("{:} {:} done.".format(time_string(), save_name))
 | |
|     final_infos = {
 | |
|         "meta_archs": nets,
 | |
|         "total_archs": total,
 | |
|         "arch2infos": arch2infos,
 | |
|         "evaluated_indexes": evaluated_indexes,
 | |
|     }
 | |
|     save_file_name = save_dir / "{:}.pickle".format(save_name)
 | |
|     pickle_save(final_infos, str(save_file_name))
 | |
|     # move the benchmark file to a new path
 | |
|     hd5sum = get_md5_file(str(save_file_name) + ".pbz2")
 | |
|     hd5_file_name = save_dir / "{:}-{:}.pickle.pbz2".format(NATS_TSS_BASE_NAME, hd5sum)
 | |
|     shutil.move(str(save_file_name) + ".pbz2", hd5_file_name)
 | |
|     print(
 | |
|         "Save {:} / {:} architecture results into {:} -> {:}.".format(
 | |
|             len(evaluated_indexes), total, save_file_name, hd5_file_name
 | |
|         )
 | |
|     )
 | |
|     # move the directory to a new path
 | |
|     hd5_full_save_dir = save_dir / "{:}-{:}-full".format(NATS_TSS_BASE_NAME, hd5sum)
 | |
|     hd5_simple_save_dir = save_dir / "{:}-{:}-simple".format(NATS_TSS_BASE_NAME, hd5sum)
 | |
|     shutil.move(full_save_dir, hd5_full_save_dir)
 | |
|     shutil.move(simple_save_dir, hd5_simple_save_dir)
 | |
|     # save the meta information for simple and full
 | |
|     # final_infos['arch2infos'] = None
 | |
|     # final_infos['evaluated_indexes'] = set()
 | |
| 
 | |
| 
 | |
| def traverse_net(max_node):
 | |
|     aa_nas_bench_ss = get_search_spaces("cell", "nats-bench")
 | |
|     archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
 | |
|     print(
 | |
|         "There are {:} archs vs {:}.".format(
 | |
|             len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2)
 | |
|         )
 | |
|     )
 | |
| 
 | |
|     random.seed(88)  # please do not change this line for reproducibility
 | |
|     random.shuffle(archs)
 | |
|     assert (
 | |
|         archs[0].tostr()
 | |
|         == "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|"
 | |
|     ), "please check the 0-th architecture : {:}".format(archs[0])
 | |
|     assert (
 | |
|         archs[9].tostr()
 | |
|         == "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
 | |
|     ), "please check the 9-th architecture : {:}".format(archs[9])
 | |
|     assert (
 | |
|         archs[123].tostr()
 | |
|         == "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
 | |
|     ), "please check the 123-th architecture : {:}".format(archs[123])
 | |
|     return [x.tostr() for x in archs]
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
| 
 | |
|     parser = argparse.ArgumentParser(
 | |
|         description="NATS-Bench (topology search space)",
 | |
|         formatter_class=argparse.ArgumentDefaultsHelpFormatter,
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--base_save_dir",
 | |
|         type=str,
 | |
|         default="./output/NATS-Bench-topology",
 | |
|         help="The base-name of folder to save checkpoints and log.",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--max_node", type=int, default=4, help="The maximum node in a cell."
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--channel", type=int, default=16, help="The number of channels."
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--num_cells", type=int, default=5, help="The number of cells in one stage."
 | |
|     )
 | |
|     parser.add_argument("--check_N", type=int, default=15625, help="For safety.")
 | |
|     parser.add_argument(
 | |
|         "--save_name", type=str, default="process", help="The save directory."
 | |
|     )
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     nets = traverse_net(args.max_node)
 | |
|     if len(nets) != args.check_N:
 | |
|         raise ValueError(
 | |
|             "Pre-num-check failed : {:} vs {:}".format(len(nets), args.check_N)
 | |
|         )
 | |
| 
 | |
|     save_dir = Path(args.base_save_dir)
 | |
|     simplify(
 | |
|         save_dir,
 | |
|         args.save_name,
 | |
|         nets,
 | |
|         args.check_N,
 | |
|         {"name": "infer.tiny", "channel": args.channel, "num_cells": args.num_cells},
 | |
|     )
 |