xautodl/exps/NATS-Bench/sss-file-manager.py
2021-03-17 09:25:58 +00:00

91 lines
4.0 KiB
Python

##############################################################################
# NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size #
##############################################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 #
##############################################################################
# Usage: python exps/NATS-Bench/sss-file-manager.py --mode check #
##############################################################################
import os, sys, time, torch, argparse
from typing import List, Text, Dict, Any
from shutil import copyfile
from collections import defaultdict
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from config_utils import dict2config, load_config
from procedures import bench_evaluate_for_seed
from procedures import get_machine_info
from datasets import get_datasets
from log_utils import Logger, AverageMeter, time_string, convert_secs2time
def obtain_valid_ckp(save_dir: Text, total: int):
possible_seeds = [777, 888, 999]
seed2ckps = defaultdict(list)
miss2ckps = defaultdict(list)
for i in range(total):
for seed in possible_seeds:
path = os.path.join(save_dir, "arch-{:06d}-seed-{:04d}.pth".format(i, seed))
if os.path.exists(path):
seed2ckps[seed].append(i)
else:
miss2ckps[seed].append(i)
for seed, xlist in seed2ckps.items():
print(
"[{:}] [seed={:}] has {:5d}/{:5d} | miss {:5d}/{:5d}".format(
save_dir, seed, len(xlist), total, total - len(xlist), total
)
)
return dict(seed2ckps), dict(miss2ckps)
def copy_data(source_dir, target_dir, meta_path):
target_dir = Path(target_dir)
target_dir.mkdir(parents=True, exist_ok=True)
miss2ckps = torch.load(meta_path)["miss2ckps"]
s2t = {}
for seed, xlist in miss2ckps.items():
for i in xlist:
file_name = "arch-{:06d}-seed-{:04d}.pth".format(i, seed)
source_path = os.path.join(source_dir, file_name)
target_path = os.path.join(target_dir, file_name)
if os.path.exists(source_path):
s2t[source_path] = target_path
print("Map from {:} to {:}, find {:} missed ckps.".format(source_dir, target_dir, len(s2t)))
for s, t in s2t.items():
copyfile(s, t)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="NATS-Bench (size search space) file manager.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--mode", type=str, required=True, choices=["check", "copy"], help="The script mode.")
parser.add_argument(
"--save_dir", type=str, default="output/NATS-Bench-size", help="Folder to save checkpoints and log."
)
parser.add_argument("--check_N", type=int, default=32768, help="For safety.")
# use for train the model
args = parser.parse_args()
possible_configs = ["01", "12", "90"]
if args.mode == "check":
for config in possible_configs:
cur_save_dir = "{:}/raw-data-{:}".format(args.save_dir, config)
seed2ckps, miss2ckps = obtain_valid_ckp(cur_save_dir, args.check_N)
torch.save(dict(seed2ckps=seed2ckps, miss2ckps=miss2ckps), "{:}/meta-{:}.pth".format(args.save_dir, config))
elif args.mode == "copy":
for config in possible_configs:
cur_save_dir = "{:}/raw-data-{:}".format(args.save_dir, config)
cur_copy_dir = "{:}/copy-{:}".format(args.save_dir, config)
cur_meta_path = "{:}/meta-{:}.pth".format(args.save_dir, config)
if os.path.exists(cur_meta_path):
copy_data(cur_save_dir, cur_copy_dir, cur_meta_path)
else:
print("Do not find : {:}".format(cur_meta_path))
else:
raise ValueError("invalid mode : {:}".format(args.mode))