xautodl/lib/models/cell_searchs/operations.py
2019-10-16 16:29:57 +11:00

114 lines
3.6 KiB
Python

import torch
import torch.nn as nn
__all__ = ['OPS', 'ReLUConvBN', 'SearchSpaceNames']
OPS = {
'none' : lambda C_in, C_out, stride: Zero(C_in, C_out, stride),
'avg_pool_3x3' : lambda C_in, C_out, stride: POOLING(C_in, C_out, stride, 'avg'),
'max_pool_3x3' : lambda C_in, C_out, stride: POOLING(C_in, C_out, stride, 'max'),
'nor_conv_7x7' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), (1,1)),
'nor_conv_3x3' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1)),
'nor_conv_1x1' : lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1)),
'skip_connect' : lambda C_in, C_out, stride: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride),
}
CONNECT_NAS_BENCHMARK = ['none', 'skip_connect', 'nor_conv_3x3']
SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK}
class POOLING(nn.Module):
def __init__(self, C_in, C_out, stride, mode):
super(POOLING, self).__init__()
if C_in == C_out:
self.preprocess = None
else:
self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0)
if mode == 'avg' : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1)
else : raise ValueError('Invalid mode={:} in POOLING'.format(mode))
def forward(self, inputs):
if self.preprocess: x = self.preprocess(inputs)
else : x = inputs
return self.op(x)
class ReLUConvBN(nn.Module):
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation):
super(ReLUConvBN, self).__init__()
self.op = nn.Sequential(
nn.ReLU(inplace=False),
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False),
nn.BatchNorm2d(C_out)
)
def forward(self, x):
return self.op(x)
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
class Zero(nn.Module):
def __init__(self, C_in, C_out, stride):
super(Zero, self).__init__()
self.C_in = C_in
self.C_out = C_out
self.stride = stride
self.is_zero = True
def forward(self, x):
if self.C_in == self.C_out:
if self.stride == 1: return x.mul(0.)
else : return x[:,:,::self.stride,::self.stride].mul(0.)
else:
shape = list(x.shape)
shape[1] = self.C_out
zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device)
return zeros
def extra_repr(self):
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)
class FactorizedReduce(nn.Module):
def __init__(self, C_in, C_out, stride):
super(FactorizedReduce, self).__init__()
self.stride = stride
self.C_in = C_in
self.C_out = C_out
self.relu = nn.ReLU(inplace=False)
if stride == 2:
#assert C_out % 2 == 0, 'C_out : {:}'.format(C_out)
C_outs = [C_out // 2, C_out - C_out // 2]
self.convs = nn.ModuleList()
for i in range(2):
self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) )
self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
else:
raise ValueError('Invalid stride : {:}'.format(stride))
self.bn = nn.BatchNorm2d(C_out)
def forward(self, x):
x = self.relu(x)
y = self.pad(x)
out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1)
out = self.bn(out)
return out
def extra_repr(self):
return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)