182 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			182 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import copy, torch
 | |
| import torch.nn as nn
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| def count_parameters_in_MB(model):
 | |
|   if isinstance(model, nn.Module):
 | |
|     return np.sum(np.prod(v.size()) for v in model.parameters())/1e6
 | |
|   else:
 | |
|     return np.sum(np.prod(v.size()) for v in model)/1e6
 | |
| 
 | |
| 
 | |
| def get_model_infos(model, shape):
 | |
|   #model = copy.deepcopy( model )
 | |
| 
 | |
|   model = add_flops_counting_methods(model)
 | |
|   #model = model.cuda()
 | |
|   model.eval()
 | |
| 
 | |
|   #cache_inputs = torch.zeros(*shape).cuda()
 | |
|   #cache_inputs = torch.zeros(*shape)
 | |
|   cache_inputs = torch.rand(*shape)
 | |
|   if next(model.parameters()).is_cuda: cache_inputs = cache_inputs.cuda()
 | |
|   #print_log('In the calculating function : cache input size : {:}'.format(cache_inputs.size()), log)
 | |
|   with torch.no_grad():
 | |
|     _____ = model(cache_inputs)
 | |
|   FLOPs = compute_average_flops_cost( model ) / 1e6
 | |
|   Param = count_parameters_in_MB(model)
 | |
| 
 | |
|   if hasattr(model, 'auxiliary_param'):
 | |
|     aux_params = count_parameters_in_MB(model.auxiliary_param()) 
 | |
|     print ('The auxiliary params of this model is : {:}'.format(aux_params))
 | |
|     print ('We remove the auxiliary params from the total params ({:}) when counting'.format(Param))
 | |
|     Param = Param - aux_params
 | |
|   
 | |
|   #print_log('FLOPs : {:} MB'.format(FLOPs), log)
 | |
|   torch.cuda.empty_cache()
 | |
|   model.apply( remove_hook_function )
 | |
|   return FLOPs, Param
 | |
| 
 | |
| 
 | |
| # ---- Public functions
 | |
| def add_flops_counting_methods( model ):
 | |
|   model.__batch_counter__ = 0
 | |
|   add_batch_counter_hook_function( model )
 | |
|   model.apply( add_flops_counter_variable_or_reset )
 | |
|   model.apply( add_flops_counter_hook_function )
 | |
|   return model
 | |
| 
 | |
| 
 | |
| 
 | |
| def compute_average_flops_cost(model):
 | |
|   """
 | |
|   A method that will be available after add_flops_counting_methods() is called on a desired net object.
 | |
|   Returns current mean flops consumption per image.
 | |
|   """
 | |
|   batches_count = model.__batch_counter__
 | |
|   flops_sum = 0
 | |
|   #or isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d) \
 | |
|   for module in model.modules():
 | |
|     if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear) \
 | |
|       or isinstance(module, torch.nn.Conv1d) \
 | |
|       or hasattr(module, 'calculate_flop_self'):
 | |
|       flops_sum += module.__flops__
 | |
|   return flops_sum / batches_count
 | |
| 
 | |
| 
 | |
| # ---- Internal functions
 | |
| def pool_flops_counter_hook(pool_module, inputs, output):
 | |
|   batch_size = inputs[0].size(0)
 | |
|   kernel_size = pool_module.kernel_size
 | |
|   out_C, output_height, output_width = output.shape[1:]
 | |
|   assert out_C == inputs[0].size(1), '{:} vs. {:}'.format(out_C, inputs[0].size())
 | |
| 
 | |
|   overall_flops = batch_size * out_C * output_height * output_width * kernel_size * kernel_size
 | |
|   pool_module.__flops__ += overall_flops
 | |
| 
 | |
| 
 | |
| def self_calculate_flops_counter_hook(self_module, inputs, output):
 | |
|   overall_flops = self_module.calculate_flop_self(inputs[0].shape, output.shape)
 | |
|   self_module.__flops__ += overall_flops
 | |
| 
 | |
| 
 | |
| def fc_flops_counter_hook(fc_module, inputs, output):
 | |
|   batch_size = inputs[0].size(0)
 | |
|   xin, xout = fc_module.in_features, fc_module.out_features
 | |
|   assert xin == inputs[0].size(1) and xout == output.size(1), 'IO=({:}, {:})'.format(xin, xout)
 | |
|   overall_flops = batch_size * xin * xout
 | |
|   if fc_module.bias is not None:
 | |
|     overall_flops += batch_size * xout
 | |
|   fc_module.__flops__ += overall_flops
 | |
| 
 | |
| 
 | |
| def conv1d_flops_counter_hook(conv_module, inputs, outputs):
 | |
|   batch_size   = inputs[0].size(0)
 | |
|   outL         = outputs.shape[-1]
 | |
|   [kernel]     = conv_module.kernel_size
 | |
|   in_channels  = conv_module.in_channels
 | |
|   out_channels = conv_module.out_channels
 | |
|   groups       = conv_module.groups
 | |
|   conv_per_position_flops = kernel * in_channels * out_channels / groups
 | |
|   
 | |
|   active_elements_count = batch_size * outL 
 | |
|   overall_flops = conv_per_position_flops * active_elements_count
 | |
| 
 | |
|   if conv_module.bias is not None:
 | |
|     overall_flops += out_channels * active_elements_count
 | |
|   conv_module.__flops__ += overall_flops
 | |
| 
 | |
| 
 | |
| def conv2d_flops_counter_hook(conv_module, inputs, output):
 | |
|   batch_size = inputs[0].size(0)
 | |
|   output_height, output_width = output.shape[2:]
 | |
|   
 | |
|   kernel_height, kernel_width = conv_module.kernel_size
 | |
|   in_channels  = conv_module.in_channels
 | |
|   out_channels = conv_module.out_channels
 | |
|   groups       = conv_module.groups
 | |
|   conv_per_position_flops = kernel_height * kernel_width * in_channels * out_channels / groups
 | |
|   
 | |
|   active_elements_count = batch_size * output_height * output_width
 | |
|   overall_flops = conv_per_position_flops * active_elements_count
 | |
|     
 | |
|   if conv_module.bias is not None:
 | |
|     overall_flops += out_channels * active_elements_count
 | |
|   conv_module.__flops__ += overall_flops
 | |
| 
 | |
|   
 | |
| def batch_counter_hook(module, inputs, output):
 | |
|   # Can have multiple inputs, getting the first one
 | |
|   inputs = inputs[0]
 | |
|   batch_size = inputs.shape[0]
 | |
|   module.__batch_counter__ += batch_size
 | |
| 
 | |
| 
 | |
| def add_batch_counter_hook_function(module):
 | |
|   if not hasattr(module, '__batch_counter_handle__'):
 | |
|     handle = module.register_forward_hook(batch_counter_hook)
 | |
|     module.__batch_counter_handle__ = handle
 | |
| 
 | |
|   
 | |
| def add_flops_counter_variable_or_reset(module):
 | |
|   if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear) \
 | |
|     or isinstance(module, torch.nn.Conv1d) \
 | |
|     or isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d) \
 | |
|     or hasattr(module, 'calculate_flop_self'):
 | |
|     module.__flops__ = 0
 | |
| 
 | |
| 
 | |
| def add_flops_counter_hook_function(module):
 | |
|   if isinstance(module, torch.nn.Conv2d):
 | |
|     if not hasattr(module, '__flops_handle__'):
 | |
|       handle = module.register_forward_hook(conv2d_flops_counter_hook)
 | |
|       module.__flops_handle__ = handle
 | |
|   elif isinstance(module, torch.nn.Conv1d):
 | |
|     if not hasattr(module, '__flops_handle__'):
 | |
|       handle = module.register_forward_hook(conv1d_flops_counter_hook)
 | |
|       module.__flops_handle__ = handle
 | |
|   elif isinstance(module, torch.nn.Linear):
 | |
|     if not hasattr(module, '__flops_handle__'):
 | |
|       handle = module.register_forward_hook(fc_flops_counter_hook)
 | |
|       module.__flops_handle__ = handle
 | |
|   elif isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d):
 | |
|     if not hasattr(module, '__flops_handle__'):
 | |
|       handle = module.register_forward_hook(pool_flops_counter_hook)
 | |
|       module.__flops_handle__ = handle
 | |
|   elif hasattr(module, 'calculate_flop_self'): # self-defined module
 | |
|     if not hasattr(module, '__flops_handle__'):
 | |
|       handle = module.register_forward_hook(self_calculate_flops_counter_hook)
 | |
|       module.__flops_handle__ = handle
 | |
| 
 | |
| 
 | |
| def remove_hook_function(module):
 | |
|   hookers = ['__batch_counter_handle__', '__flops_handle__']
 | |
|   for hooker in hookers:
 | |
|     if hasattr(module, hooker):
 | |
|       handle = getattr(module, hooker)
 | |
|       handle.remove()
 | |
|   keys = ['__flops__', '__batch_counter__', '__flops__'] + hookers
 | |
|   for ckey in keys:
 | |
|     if hasattr(module, ckey): delattr(module, ckey)
 |