345 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			345 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
 | |
| ##########################################################################
 | |
| # Efficient Neural Architecture Search via Parameters Sharing, ICML 2018 #
 | |
| ##########################################################################
 | |
| import os, sys, time, glob, random, argparse
 | |
| import numpy as np
 | |
| from copy import deepcopy
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from pathlib import Path
 | |
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
 | |
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import load_config, dict2config, configure2str
 | |
| from datasets     import get_datasets, get_nas_search_loaders
 | |
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
 | |
| from utils        import get_model_infos, obtain_accuracy
 | |
| from log_utils    import AverageMeter, time_string, convert_secs2time
 | |
| from models       import get_cell_based_tiny_net, get_search_spaces
 | |
| from nas_201_api  import NASBench201API as API
 | |
| 
 | |
| 
 | |
| def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, optimizer, epoch_str, print_freq, logger):
 | |
|   data_time, batch_time = AverageMeter(), AverageMeter()
 | |
|   losses, top1s, top5s, xend = AverageMeter(), AverageMeter(), AverageMeter(), time.time()
 | |
|   
 | |
|   shared_cnn.train()
 | |
|   controller.eval()
 | |
| 
 | |
|   for step, (inputs, targets) in enumerate(xloader):
 | |
|     scheduler.update(None, 1.0 * step / len(xloader))
 | |
|     targets = targets.cuda(non_blocking=True)
 | |
|     # measure data loading time
 | |
|     data_time.update(time.time() - xend)
 | |
|     
 | |
|     with torch.no_grad():
 | |
|       _, _, sampled_arch = controller()
 | |
| 
 | |
|     optimizer.zero_grad()
 | |
|     shared_cnn.module.update_arch(sampled_arch)
 | |
|     _, logits = shared_cnn(inputs)
 | |
|     loss      = criterion(logits, targets)
 | |
|     loss.backward()
 | |
|     torch.nn.utils.clip_grad_norm_(shared_cnn.parameters(), 5)
 | |
|     optimizer.step()
 | |
|     # record
 | |
|     prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
 | |
|     losses.update(loss.item(),  inputs.size(0))
 | |
|     top1s.update (prec1.item(), inputs.size(0))
 | |
|     top5s.update (prec5.item(), inputs.size(0))
 | |
| 
 | |
|     # measure elapsed time
 | |
|     batch_time.update(time.time() - xend)
 | |
|     xend = time.time()
 | |
| 
 | |
|     if step % print_freq == 0 or step + 1 == len(xloader):
 | |
|       Sstr = '*Train-Shared-CNN* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
 | |
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
 | |
|       Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=losses, top1=top1s, top5=top5s)
 | |
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr)
 | |
|   return losses.avg, top1s.avg, top5s.avg
 | |
| 
 | |
| 
 | |
| def train_controller(xloader, shared_cnn, controller, criterion, optimizer, config, epoch_str, print_freq, logger):
 | |
|   # config. (containing some necessary arg)
 | |
|   #   baseline: The baseline score (i.e. average val_acc) from the previous epoch
 | |
|   data_time, batch_time = AverageMeter(), AverageMeter()
 | |
|   GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time()
 | |
|   
 | |
|   shared_cnn.eval()
 | |
|   controller.train()
 | |
|   controller.zero_grad()
 | |
|   #for step, (inputs, targets) in enumerate(xloader):
 | |
|   loader_iter = iter(xloader)
 | |
|   for step in range(config.ctl_train_steps * config.ctl_num_aggre):
 | |
|     try:
 | |
|       inputs, targets = next(loader_iter)
 | |
|     except:
 | |
|       loader_iter = iter(xloader)
 | |
|       inputs, targets = next(loader_iter)
 | |
|     targets = targets.cuda(non_blocking=True)
 | |
|     # measure data loading time
 | |
|     data_time.update(time.time() - xend)
 | |
|     
 | |
|     log_prob, entropy, sampled_arch = controller()
 | |
|     with torch.no_grad():
 | |
|       shared_cnn.module.update_arch(sampled_arch)
 | |
|       _, logits = shared_cnn(inputs)
 | |
|       val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
 | |
|       val_top1  = val_top1.view(-1) / 100
 | |
|     reward = val_top1 + config.ctl_entropy_w * entropy
 | |
|     if config.baseline is None:
 | |
|       baseline = val_top1
 | |
|     else:
 | |
|       baseline = config.baseline - (1 - config.ctl_bl_dec) * (config.baseline - reward)
 | |
|    
 | |
|     loss = -1 * log_prob * (reward - baseline)
 | |
|     
 | |
|     # account
 | |
|     RewardMeter.update(reward.item())
 | |
|     BaselineMeter.update(baseline.item())
 | |
|     ValAccMeter.update(val_top1.item()*100)
 | |
|     LossMeter.update(loss.item())
 | |
|     EntropyMeter.update(entropy.item())
 | |
|   
 | |
|     # Average gradient over controller_num_aggregate samples
 | |
|     loss = loss / config.ctl_num_aggre
 | |
|     loss.backward(retain_graph=True)
 | |
| 
 | |
|     # measure elapsed time
 | |
|     batch_time.update(time.time() - xend)
 | |
|     xend = time.time()
 | |
|     if (step+1) % config.ctl_num_aggre == 0:
 | |
|       grad_norm = torch.nn.utils.clip_grad_norm_(controller.parameters(), 5.0)
 | |
|       GradnormMeter.update(grad_norm)
 | |
|       optimizer.step()
 | |
|       controller.zero_grad()
 | |
| 
 | |
|     if step % print_freq == 0:
 | |
|       Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre)
 | |
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
 | |
|       Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter)
 | |
|       Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg)
 | |
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr)
 | |
| 
 | |
|   return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg, baseline.item()
 | |
| 
 | |
| 
 | |
| def get_best_arch(controller, shared_cnn, xloader, n_samples=10):
 | |
|   with torch.no_grad():
 | |
|     controller.eval()
 | |
|     shared_cnn.eval()
 | |
|     archs, valid_accs = [], []
 | |
|     loader_iter = iter(xloader)
 | |
|     for i in range(n_samples):
 | |
|       try:
 | |
|         inputs, targets = next(loader_iter)
 | |
|       except:
 | |
|         loader_iter = iter(xloader)
 | |
|         inputs, targets = next(loader_iter)
 | |
| 
 | |
|       _, _, sampled_arch = controller()
 | |
|       arch = shared_cnn.module.update_arch(sampled_arch)
 | |
|       _, logits = shared_cnn(inputs)
 | |
|       val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
 | |
| 
 | |
|       archs.append( arch )
 | |
|       valid_accs.append( val_top1.item() )
 | |
| 
 | |
|     best_idx = np.argmax(valid_accs)
 | |
|     best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
 | |
|     return best_arch, best_valid_acc
 | |
| 
 | |
| 
 | |
| def valid_func(xloader, network, criterion):
 | |
|   data_time, batch_time = AverageMeter(), AverageMeter()
 | |
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
 | |
|   network.eval()
 | |
|   end = time.time()
 | |
|   with torch.no_grad():
 | |
|     for step, (arch_inputs, arch_targets) in enumerate(xloader):
 | |
|       arch_targets = arch_targets.cuda(non_blocking=True)
 | |
|       # measure data loading time
 | |
|       data_time.update(time.time() - end)
 | |
|       # prediction
 | |
|       _, logits = network(arch_inputs)
 | |
|       arch_loss = criterion(logits, arch_targets)
 | |
|       # record
 | |
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
 | |
|       arch_losses.update(arch_loss.item(),  arch_inputs.size(0))
 | |
|       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0))
 | |
|       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0))
 | |
|       # measure elapsed time
 | |
|       batch_time.update(time.time() - end)
 | |
|       end = time.time()
 | |
|   return arch_losses.avg, arch_top1.avg, arch_top5.avg
 | |
| 
 | |
| 
 | |
| def main(xargs):
 | |
|   assert torch.cuda.is_available(), 'CUDA is not available.'
 | |
|   torch.backends.cudnn.enabled   = True
 | |
|   torch.backends.cudnn.benchmark = False
 | |
|   torch.backends.cudnn.deterministic = True
 | |
|   torch.set_num_threads( xargs.workers )
 | |
|   prepare_seed(xargs.rand_seed)
 | |
|   logger = prepare_logger(args)
 | |
| 
 | |
|   train_data, test_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
 | |
|   logger.log('use config from : {:}'.format(xargs.config_path))
 | |
|   config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger)
 | |
|   _, train_loader, valid_loader = get_nas_search_loaders(train_data, test_data, xargs.dataset, 'configs/nas-benchmark/', config.batch_size, xargs.workers)
 | |
|   # since ENAS will train the controller on valid-loader, we need to use train transformation for valid-loader
 | |
|   valid_loader.dataset.transform = deepcopy(train_loader.dataset.transform)
 | |
|   if hasattr(valid_loader.dataset, 'transforms'):
 | |
|     valid_loader.dataset.transforms = deepcopy(train_loader.dataset.transforms)
 | |
|   # data loader
 | |
|   logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
 | |
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
 | |
| 
 | |
|   search_space = get_search_spaces('cell', xargs.search_space_name)
 | |
|   model_config = dict2config({'name': 'ENAS', 'C': xargs.channel, 'N': xargs.num_cells,
 | |
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num,
 | |
|                               'space'    : search_space,
 | |
|                               'affine'   : False, 'track_running_stats': bool(xargs.track_running_stats)}, None)
 | |
|   shared_cnn = get_cell_based_tiny_net(model_config)
 | |
|   controller = shared_cnn.create_controller()
 | |
|   
 | |
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(shared_cnn.parameters(), config)
 | |
|   a_optimizer = torch.optim.Adam(controller.parameters(), lr=config.controller_lr, betas=config.controller_betas, eps=config.controller_eps)
 | |
|   logger.log('w-optimizer : {:}'.format(w_optimizer))
 | |
|   logger.log('a-optimizer : {:}'.format(a_optimizer))
 | |
|   logger.log('w-scheduler : {:}'.format(w_scheduler))
 | |
|   logger.log('criterion   : {:}'.format(criterion))
 | |
|   #flop, param  = get_model_infos(shared_cnn, xshape)
 | |
|   #logger.log('{:}'.format(shared_cnn))
 | |
|   #logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
 | |
|   logger.log('search-space : {:}'.format(search_space))
 | |
|   if xargs.arch_nas_dataset is None:
 | |
|     api = None
 | |
|   else:
 | |
|     api = API(xargs.arch_nas_dataset)
 | |
|   logger.log('{:} create API = {:} done'.format(time_string(), api))
 | |
|   shared_cnn, controller, criterion = torch.nn.DataParallel(shared_cnn).cuda(), controller.cuda(), criterion.cuda()
 | |
| 
 | |
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
 | |
| 
 | |
|   if last_info.exists(): # automatically resume from previous checkpoint
 | |
|     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
 | |
|     last_info   = torch.load(last_info)
 | |
|     start_epoch = last_info['epoch']
 | |
|     checkpoint  = torch.load(last_info['last_checkpoint'])
 | |
|     genotypes   = checkpoint['genotypes']
 | |
|     baseline    = checkpoint['baseline']
 | |
|     valid_accuracies = checkpoint['valid_accuracies']
 | |
|     shared_cnn.load_state_dict( checkpoint['shared_cnn'] )
 | |
|     controller.load_state_dict( checkpoint['controller'] )
 | |
|     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
 | |
|     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
 | |
|     a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
 | |
|     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
 | |
|   else:
 | |
|     logger.log("=> do not find the last-info file : {:}".format(last_info))
 | |
|     start_epoch, valid_accuracies, genotypes, baseline = 0, {'best': -1}, {}, None
 | |
| 
 | |
|   # start training
 | |
|   start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup
 | |
|   for epoch in range(start_epoch, total_epoch):
 | |
|     w_scheduler.update(epoch, 0.0)
 | |
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) )
 | |
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
 | |
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()), baseline))
 | |
| 
 | |
|     cnn_loss, cnn_top1, cnn_top5 = train_shared_cnn(train_loader, shared_cnn, controller, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, logger)
 | |
|     logger.log('[{:}] shared-cnn : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, cnn_loss, cnn_top1, cnn_top5))
 | |
|     ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline \
 | |
|                                  = train_controller(valid_loader, shared_cnn, controller, criterion, a_optimizer, \
 | |
|                                                         dict2config({'baseline': baseline,
 | |
|                                                                      'ctl_train_steps': xargs.controller_train_steps, 'ctl_num_aggre': xargs.controller_num_aggregate,
 | |
|                                                                      'ctl_entropy_w': xargs.controller_entropy_weight, 
 | |
|                                                                      'ctl_bl_dec'   : xargs.controller_bl_dec}, None), \
 | |
|                                                         epoch_str, xargs.print_freq, logger)
 | |
|     search_time.update(time.time() - start_time)
 | |
|     logger.log('[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}, time-cost={:.1f} s'.format(epoch_str, ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline, search_time.sum))
 | |
|     best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader)
 | |
|     shared_cnn.module.update_arch(best_arch)
 | |
|     _, best_valid_acc, _ = valid_func(valid_loader, shared_cnn, criterion)
 | |
| 
 | |
|     genotypes[epoch] = best_arch
 | |
|     # check the best accuracy
 | |
|     valid_accuracies[epoch] = best_valid_acc
 | |
|     if best_valid_acc > valid_accuracies['best']:
 | |
|       valid_accuracies['best'] = best_valid_acc
 | |
|       genotypes['best']        = best_arch
 | |
|       find_best = True
 | |
|     else: find_best = False
 | |
| 
 | |
|     logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
 | |
|     # save checkpoint
 | |
|     save_path = save_checkpoint({'epoch' : epoch + 1,
 | |
|                 'args'  : deepcopy(xargs),
 | |
|                 'baseline'    : baseline,
 | |
|                 'shared_cnn'  : shared_cnn.state_dict(),
 | |
|                 'controller'  : controller.state_dict(),
 | |
|                 'w_optimizer' : w_optimizer.state_dict(),
 | |
|                 'a_optimizer' : a_optimizer.state_dict(),
 | |
|                 'w_scheduler' : w_scheduler.state_dict(),
 | |
|                 'genotypes'   : genotypes,
 | |
|                 'valid_accuracies' : valid_accuracies},
 | |
|                 model_base_path, logger)
 | |
|     last_info = save_checkpoint({
 | |
|           'epoch': epoch + 1,
 | |
|           'args' : deepcopy(args),
 | |
|           'last_checkpoint': save_path,
 | |
|           }, logger.path('info'), logger)
 | |
|     if find_best:
 | |
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, best_valid_acc))
 | |
|       copy_checkpoint(model_base_path, model_best_path, logger)
 | |
|     if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] )))
 | |
|     # measure elapsed time
 | |
|     epoch_time.update(time.time() - start_time)
 | |
|     start_time = time.time()
 | |
| 
 | |
|   logger.log('\n' + '-'*100)
 | |
|   logger.log('During searching, the best architecture is {:}'.format(genotypes['best']))
 | |
|   logger.log('Its accuracy is {:.2f}%'.format(valid_accuracies['best']))
 | |
|   logger.log('Randomly select {:} architectures and select the best.'.format(xargs.controller_num_samples))
 | |
|   start_time = time.time()
 | |
|   final_arch, _ = get_best_arch(controller, shared_cnn, valid_loader, xargs.controller_num_samples)
 | |
|   search_time.update(time.time() - start_time)
 | |
|   shared_cnn.module.update_arch(final_arch)
 | |
|   final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion)
 | |
|   logger.log('The Selected Final Architecture : {:}'.format(final_arch))
 | |
|   logger.log('Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%'.format(final_loss, final_top1, final_top5))
 | |
|   logger.log('ENAS : run {:} epochs, cost {:.1f} s, last-geno is {:}.'.format(total_epoch, search_time.sum, final_arch))
 | |
|   if api is not None: logger.log('{:}'.format( api.query_by_arch(final_arch) ))
 | |
|   logger.close()
 | |
|   
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|   parser = argparse.ArgumentParser("ENAS")
 | |
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset')
 | |
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
 | |
|   # channels and number-of-cells
 | |
|   parser.add_argument('--track_running_stats',type=int,   choices=[0,1],help='Whether use track_running_stats or not in the BN layer.')
 | |
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.')
 | |
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.')
 | |
|   parser.add_argument('--channel',            type=int,   help='The number of channels.')
 | |
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.')
 | |
|   parser.add_argument('--config_path',        type=str,   help='The config file to train ENAS.')
 | |
|   parser.add_argument('--controller_train_steps',    type=int,     help='.')
 | |
|   parser.add_argument('--controller_num_aggregate',  type=int,     help='.')
 | |
|   parser.add_argument('--controller_entropy_weight', type=float,   help='The weight for the entropy of the controller.')
 | |
|   parser.add_argument('--controller_bl_dec'        , type=float,   help='.')
 | |
|   parser.add_argument('--controller_num_samples'   , type=int,     help='.')
 | |
|   # log
 | |
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)')
 | |
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.')
 | |
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (nas-benchmark).')
 | |
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)')
 | |
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed')
 | |
|   args = parser.parse_args()
 | |
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
 | |
|   main(args)
 |