238 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			238 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
 | |
| ##############################################################################
 | |
| # Random Search and Reproducibility for Neural Architecture Search, UAI 2019 #
 | |
| ##############################################################################
 | |
| import os, sys, time, glob, random, argparse
 | |
| import numpy as np
 | |
| from copy import deepcopy
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from pathlib import Path
 | |
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
 | |
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import load_config, dict2config, configure2str
 | |
| from datasets     import get_datasets, get_nas_search_loaders
 | |
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
 | |
| from utils        import get_model_infos, obtain_accuracy
 | |
| from log_utils    import AverageMeter, time_string, convert_secs2time
 | |
| from models       import get_cell_based_tiny_net, get_search_spaces
 | |
| from nas_201_api  import NASBench201API as API
 | |
| 
 | |
| 
 | |
| def search_func(xloader, network, criterion, scheduler, w_optimizer, epoch_str, print_freq, logger):
 | |
|   data_time, batch_time = AverageMeter(), AverageMeter()
 | |
|   base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter()
 | |
|   network.train()
 | |
|   end = time.time()
 | |
|   for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(xloader):
 | |
|     scheduler.update(None, 1.0 * step / len(xloader))
 | |
|     base_targets = base_targets.cuda(non_blocking=True)
 | |
|     arch_targets = arch_targets.cuda(non_blocking=True)
 | |
|     # measure data loading time
 | |
|     data_time.update(time.time() - end)
 | |
|     
 | |
|     # update the weights
 | |
|     network.module.random_genotype( True )
 | |
|     w_optimizer.zero_grad()
 | |
|     _, logits = network(base_inputs)
 | |
|     base_loss = criterion(logits, base_targets)
 | |
|     base_loss.backward()
 | |
|     nn.utils.clip_grad_norm_(network.parameters(), 5)
 | |
|     w_optimizer.step()
 | |
|     # record
 | |
|     base_prec1, base_prec5 = obtain_accuracy(logits.data, base_targets.data, topk=(1, 5))
 | |
|     base_losses.update(base_loss.item(),  base_inputs.size(0))
 | |
|     base_top1.update  (base_prec1.item(), base_inputs.size(0))
 | |
|     base_top5.update  (base_prec5.item(), base_inputs.size(0))
 | |
| 
 | |
|     # measure elapsed time
 | |
|     batch_time.update(time.time() - end)
 | |
|     end = time.time()
 | |
| 
 | |
|     if step % print_freq == 0 or step + 1 == len(xloader):
 | |
|       Sstr = '*SEARCH* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
 | |
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
 | |
|       Wstr = 'Base [Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=base_losses, top1=base_top1, top5=base_top5)
 | |
|       logger.log(Sstr + ' ' + Tstr + ' ' + Wstr)
 | |
|   return base_losses.avg, base_top1.avg, base_top5.avg
 | |
| 
 | |
| 
 | |
| def valid_func(xloader, network, criterion):
 | |
|   data_time, batch_time = AverageMeter(), AverageMeter()
 | |
|   arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
 | |
|   network.eval()
 | |
|   end = time.time()
 | |
|   with torch.no_grad():
 | |
|     for step, (arch_inputs, arch_targets) in enumerate(xloader):
 | |
|       arch_targets = arch_targets.cuda(non_blocking=True)
 | |
|       # measure data loading time
 | |
|       data_time.update(time.time() - end)
 | |
|       # prediction
 | |
| 
 | |
|       network.module.random_genotype( True )
 | |
|       _, logits = network(arch_inputs)
 | |
|       arch_loss = criterion(logits, arch_targets)
 | |
|       # record
 | |
|       arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
 | |
|       arch_losses.update(arch_loss.item(),  arch_inputs.size(0))
 | |
|       arch_top1.update  (arch_prec1.item(), arch_inputs.size(0))
 | |
|       arch_top5.update  (arch_prec5.item(), arch_inputs.size(0))
 | |
|       # measure elapsed time
 | |
|       batch_time.update(time.time() - end)
 | |
|       end = time.time()
 | |
|   return arch_losses.avg, arch_top1.avg, arch_top5.avg
 | |
| 
 | |
| 
 | |
| def search_find_best(xloader, network, n_samples):
 | |
|   with torch.no_grad():
 | |
|     network.eval()
 | |
|     archs, valid_accs = [], []
 | |
|     #print ('obtain the top-{:} architectures'.format(n_samples))
 | |
|     loader_iter = iter(xloader)
 | |
|     for i in range(n_samples):
 | |
|       arch = network.module.random_genotype( True )
 | |
|       try:
 | |
|         inputs, targets = next(loader_iter)
 | |
|       except:
 | |
|         loader_iter = iter(xloader)
 | |
|         inputs, targets = next(loader_iter)
 | |
| 
 | |
|       _, logits = network(inputs)
 | |
|       val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
 | |
| 
 | |
|       archs.append( arch )
 | |
|       valid_accs.append( val_top1.item() )
 | |
| 
 | |
|     best_idx = np.argmax(valid_accs)
 | |
|     best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
 | |
|     return best_arch, best_valid_acc
 | |
| 
 | |
| 
 | |
| def main(xargs):
 | |
|   assert torch.cuda.is_available(), 'CUDA is not available.'
 | |
|   torch.backends.cudnn.enabled   = True
 | |
|   torch.backends.cudnn.benchmark = False
 | |
|   torch.backends.cudnn.deterministic = True
 | |
|   torch.set_num_threads( xargs.workers )
 | |
|   prepare_seed(xargs.rand_seed)
 | |
|   logger = prepare_logger(args)
 | |
| 
 | |
|   train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
 | |
|   config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger)
 | |
|   search_loader, _, valid_loader = get_nas_search_loaders(train_data, valid_data, xargs.dataset, 'configs/nas-benchmark/', \
 | |
|                                         (config.batch_size, config.test_batch_size), xargs.workers)
 | |
|   logger.log('||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(search_loader), len(valid_loader), config.batch_size))
 | |
|   logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
 | |
| 
 | |
|   search_space = get_search_spaces('cell', xargs.search_space_name)
 | |
|   model_config = dict2config({'name': 'RANDOM', 'C': xargs.channel, 'N': xargs.num_cells,
 | |
|                               'max_nodes': xargs.max_nodes, 'num_classes': class_num,
 | |
|                               'space'    : search_space,
 | |
|                               'affine'   : False, 'track_running_stats': bool(xargs.track_running_stats)}, None)
 | |
|   search_model = get_cell_based_tiny_net(model_config)
 | |
|   
 | |
|   w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.parameters(), config)
 | |
|   logger.log('w-optimizer : {:}'.format(w_optimizer))
 | |
|   logger.log('w-scheduler : {:}'.format(w_scheduler))
 | |
|   logger.log('criterion   : {:}'.format(criterion))
 | |
|   if xargs.arch_nas_dataset is None: api = None
 | |
|   else                             : api = API(xargs.arch_nas_dataset)
 | |
|   logger.log('{:} create API = {:} done'.format(time_string(), api))
 | |
| 
 | |
|   last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
 | |
|   network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda()
 | |
| 
 | |
|   if last_info.exists(): # automatically resume from previous checkpoint
 | |
|     logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
 | |
|     last_info   = torch.load(last_info)
 | |
|     start_epoch = last_info['epoch']
 | |
|     checkpoint  = torch.load(last_info['last_checkpoint'])
 | |
|     genotypes   = checkpoint['genotypes']
 | |
|     valid_accuracies = checkpoint['valid_accuracies']
 | |
|     search_model.load_state_dict( checkpoint['search_model'] )
 | |
|     w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
 | |
|     w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
 | |
|     logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
 | |
|   else:
 | |
|     logger.log("=> do not find the last-info file : {:}".format(last_info))
 | |
|     start_epoch, valid_accuracies, genotypes = 0, {'best': -1}, {}
 | |
| 
 | |
|   # start training
 | |
|   start_time, search_time, epoch_time, total_epoch = time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup
 | |
|   for epoch in range(start_epoch, total_epoch):
 | |
|     w_scheduler.update(epoch, 0.0)
 | |
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) )
 | |
|     epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
 | |
|     logger.log('\n[Search the {:}-th epoch] {:}, LR={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr())))
 | |
| 
 | |
|     # selected_arch = search_find_best(valid_loader, network, criterion, xargs.select_num)
 | |
|     search_w_loss, search_w_top1, search_w_top5 = search_func(search_loader, network, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, logger)
 | |
|     search_time.update(time.time() - start_time)
 | |
|     logger.log('[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s'.format(epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum))
 | |
|     valid_a_loss , valid_a_top1 , valid_a_top5  = valid_func(valid_loader, network, criterion)
 | |
|     logger.log('[{:}] evaluate  : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, valid_a_loss, valid_a_top1, valid_a_top5))
 | |
|     cur_arch, cur_valid_acc = search_find_best(valid_loader, network, xargs.select_num)
 | |
|     logger.log('[{:}] find-the-best : {:}, accuracy@1={:.2f}%'.format(epoch_str, cur_arch, cur_valid_acc))
 | |
|     genotypes[epoch] = cur_arch
 | |
|     # check the best accuracy
 | |
|     valid_accuracies[epoch] = valid_a_top1
 | |
|     if valid_a_top1 > valid_accuracies['best']:
 | |
|       valid_accuracies['best'] = valid_a_top1
 | |
|       find_best = True
 | |
|     else: find_best = False
 | |
| 
 | |
|     # save checkpoint
 | |
|     save_path = save_checkpoint({'epoch' : epoch + 1,
 | |
|                 'args'  : deepcopy(xargs),
 | |
|                 'search_model': search_model.state_dict(),
 | |
|                 'w_optimizer' : w_optimizer.state_dict(),
 | |
|                 'w_scheduler' : w_scheduler.state_dict(),
 | |
|                 'genotypes'   : genotypes,
 | |
|                 'valid_accuracies' : valid_accuracies},
 | |
|                 model_base_path, logger)
 | |
|     last_info = save_checkpoint({
 | |
|           'epoch': epoch + 1,
 | |
|           'args' : deepcopy(args),
 | |
|           'last_checkpoint': save_path,
 | |
|           }, logger.path('info'), logger)
 | |
|     if find_best:
 | |
|       logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1))
 | |
|       copy_checkpoint(model_base_path, model_best_path, logger)
 | |
|     if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] )))
 | |
|     # measure elapsed time
 | |
|     epoch_time.update(time.time() - start_time)
 | |
|     start_time = time.time()
 | |
| 
 | |
|   logger.log('\n' + '-'*200)
 | |
|   logger.log('Pre-searching costs {:.1f} s'.format(search_time.sum))
 | |
|   start_time = time.time()
 | |
|   best_arch, best_acc = search_find_best(valid_loader, network, xargs.select_num)
 | |
|   search_time.update(time.time() - start_time)
 | |
|   logger.log('RANDOM-NAS finds the best one : {:} with accuracy={:.2f}%, with {:.1f} s.'.format(best_arch, best_acc, search_time.sum))
 | |
|   if api is not None: logger.log('{:}'.format( api.query_by_arch(best_arch) ))
 | |
|   logger.close()
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|   parser = argparse.ArgumentParser("Random search for NAS.")
 | |
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset')
 | |
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
 | |
|   # channels and number-of-cells
 | |
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.')
 | |
|   parser.add_argument('--config_path',        type=str,   help='The path to the configuration.')
 | |
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.')
 | |
|   parser.add_argument('--channel',            type=int,   help='The number of channels.')
 | |
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.')
 | |
|   parser.add_argument('--select_num',         type=int,   help='The number of selected architectures to evaluate.')
 | |
|   parser.add_argument('--track_running_stats',type=int,   choices=[0,1],help='Whether use track_running_stats or not in the BN layer.')
 | |
|   # log
 | |
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)')
 | |
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.')
 | |
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).')
 | |
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)')
 | |
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed')
 | |
|   args = parser.parse_args()
 | |
|   if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
 | |
|   main(args)
 |