269 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			269 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
 | |
| ##################################################################
 | |
| # Regularized Evolution for Image Classifier Architecture Search #
 | |
| ##################################################################
 | |
| import os, sys, time, glob, random, argparse
 | |
| import numpy as np, collections
 | |
| from copy import deepcopy
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from pathlib import Path
 | |
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
 | |
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
 | |
| from config_utils import load_config, dict2config, configure2str
 | |
| from datasets     import get_datasets, SearchDataset
 | |
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
 | |
| from utils        import get_model_infos, obtain_accuracy
 | |
| from log_utils    import AverageMeter, time_string, convert_secs2time
 | |
| from nas_201_api  import NASBench201API as API
 | |
| from models       import CellStructure, get_search_spaces
 | |
| 
 | |
| 
 | |
| class Model(object):
 | |
| 
 | |
|   def __init__(self):
 | |
|     self.arch = None
 | |
|     self.accuracy = None
 | |
|     
 | |
|   def __str__(self):
 | |
|     """Prints a readable version of this bitstring."""
 | |
|     return '{:}'.format(self.arch)
 | |
|   
 | |
| 
 | |
| # This function is to mimic the training and evaluatinig procedure for a single architecture `arch`.
 | |
| # The time_cost is calculated as the total training time for a few (e.g., 12 epochs) plus the evaluation time for one epoch.
 | |
| # For use_012_epoch_training = True, the architecture is trained for 12 epochs, with LR being decaded from 0.1 to 0.
 | |
| #       In this case, the LR schedular is converged.
 | |
| # For use_012_epoch_training = False, the architecture is planed to be trained for 200 epochs, but we early stop its procedure.
 | |
| #       
 | |
| def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_012_epoch_training=True):
 | |
| 
 | |
|   if use_012_epoch_training and nas_bench is not None:
 | |
|     arch_index = nas_bench.query_index_by_arch( arch )
 | |
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch)
 | |
|     info = nas_bench.get_more_info(arch_index, dataname, None, True)
 | |
|     valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time']
 | |
|     #_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs
 | |
|   elif not use_012_epoch_training and nas_bench is not None:
 | |
|     # Please contact me if you want to use the following logic, because it has some potential issues.
 | |
|     # Please use `use_012_epoch_training=False` for cifar10 only.
 | |
|     # It did return values for cifar100 and ImageNet16-120, but it has some potential issues. (Please email me for more details)
 | |
|     arch_index, nepoch = nas_bench.query_index_by_arch( arch ), 25
 | |
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch)
 | |
|     xoinfo = nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True)
 | |
|     xocost = nas_bench.get_cost_info(arch_index, 'cifar10-valid', False)
 | |
|     info = nas_bench.get_more_info(arch_index, dataname, nepoch, False, True) # use the validation accuracy after 25 training epochs, which is used in our ICLR submission (not the camera ready).
 | |
|     cost = nas_bench.get_cost_info(arch_index, dataname, False)
 | |
|     # The following codes are used to estimate the time cost.
 | |
|     # When we build NAS-Bench-201, architectures are trained on different machines and we can not use that time record.
 | |
|     # When we create checkpoints for converged_LR, we run all experiments on 1080Ti, and thus the time for each architecture can be fairly compared.
 | |
|     nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000,
 | |
|             'cifar10-valid-train' : 25000,  'cifar10-valid-valid' : 25000,
 | |
|             'cifar100-train'      : 50000,  'cifar100-valid'      : 5000}
 | |
|     estimated_train_cost = xoinfo['train-per-time'] / nums['cifar10-valid-train'] * nums['{:}-train'.format(dataname)] / xocost['latency'] * cost['latency'] * nepoch
 | |
|     estimated_valid_cost = xoinfo['valid-per-time'] / nums['cifar10-valid-valid'] * nums['{:}-valid'.format(dataname)] / xocost['latency'] * cost['latency']
 | |
|     try:
 | |
|       valid_acc, time_cost = info['valid-accuracy'], estimated_train_cost + estimated_valid_cost
 | |
|     except:
 | |
|       valid_acc, time_cost = info['valtest-accuracy'], estimated_train_cost + estimated_valid_cost
 | |
|   else:
 | |
|     # train a model from scratch.
 | |
|     raise ValueError('NOT IMPLEMENT YET')
 | |
|   return valid_acc, time_cost
 | |
| 
 | |
| 
 | |
| def random_architecture_func(max_nodes, op_names):
 | |
|   # return a random architecture
 | |
|   def random_architecture():
 | |
|     genotypes = []
 | |
|     for i in range(1, max_nodes):
 | |
|       xlist = []
 | |
|       for j in range(i):
 | |
|         node_str = '{:}<-{:}'.format(i, j)
 | |
|         op_name  = random.choice( op_names )
 | |
|         xlist.append((op_name, j))
 | |
|       genotypes.append( tuple(xlist) )
 | |
|     return CellStructure( genotypes )
 | |
|   return random_architecture
 | |
| 
 | |
| 
 | |
| def mutate_arch_func(op_names):
 | |
|   """Computes the architecture for a child of the given parent architecture.
 | |
|   The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another.
 | |
|   """
 | |
|   def mutate_arch_func(parent_arch):
 | |
|     child_arch = deepcopy( parent_arch )
 | |
|     node_id = random.randint(0, len(child_arch.nodes)-1)
 | |
|     node_info = list( child_arch.nodes[node_id] )
 | |
|     snode_id = random.randint(0, len(node_info)-1)
 | |
|     xop = random.choice( op_names )
 | |
|     while xop == node_info[snode_id][0]:
 | |
|       xop = random.choice( op_names )
 | |
|     node_info[snode_id] = (xop, node_info[snode_id][1])
 | |
|     child_arch.nodes[node_id] = tuple( node_info )
 | |
|     return child_arch
 | |
|   return mutate_arch_func
 | |
| 
 | |
| 
 | |
| def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, nas_bench, extra_info, dataname):
 | |
|   """Algorithm for regularized evolution (i.e. aging evolution).
 | |
|   
 | |
|   Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image
 | |
|   Classifier Architecture Search".
 | |
|   
 | |
|   Args:
 | |
|     cycles: the number of cycles the algorithm should run for.
 | |
|     population_size: the number of individuals to keep in the population.
 | |
|     sample_size: the number of individuals that should participate in each tournament.
 | |
|     time_budget: the upper bound of searching cost
 | |
| 
 | |
|   Returns:
 | |
|     history: a list of `Model` instances, representing all the models computed
 | |
|         during the evolution experiment.
 | |
|   """
 | |
|   population = collections.deque()
 | |
|   history, total_time_cost = [], 0  # Not used by the algorithm, only used to report results.
 | |
| 
 | |
|   # Initialize the population with random models.
 | |
|   while len(population) < population_size:
 | |
|     model = Model()
 | |
|     model.arch = random_arch()
 | |
|     model.accuracy, time_cost = train_and_eval(model.arch, nas_bench, extra_info, dataname)
 | |
|     population.append(model)
 | |
|     history.append(model)
 | |
|     total_time_cost += time_cost
 | |
| 
 | |
|   # Carry out evolution in cycles. Each cycle produces a model and removes
 | |
|   # another.
 | |
|   #while len(history) < cycles:
 | |
|   while total_time_cost < time_budget:
 | |
|     # Sample randomly chosen models from the current population.
 | |
|     start_time, sample = time.time(), []
 | |
|     while len(sample) < sample_size:
 | |
|       # Inefficient, but written this way for clarity. In the case of neural
 | |
|       # nets, the efficiency of this line is irrelevant because training neural
 | |
|       # nets is the rate-determining step.
 | |
|       candidate = random.choice(list(population))
 | |
|       sample.append(candidate)
 | |
| 
 | |
|     # The parent is the best model in the sample.
 | |
|     parent = max(sample, key=lambda i: i.accuracy)
 | |
| 
 | |
|     # Create the child model and store it.
 | |
|     child = Model()
 | |
|     child.arch = mutate_arch(parent.arch)
 | |
|     total_time_cost += time.time() - start_time
 | |
|     child.accuracy, time_cost = train_and_eval(child.arch, nas_bench, extra_info, dataname)
 | |
|     if total_time_cost + time_cost > time_budget: # return
 | |
|       return history, total_time_cost
 | |
|     else:
 | |
|       total_time_cost += time_cost
 | |
|     population.append(child)
 | |
|     history.append(child)
 | |
| 
 | |
|     # Remove the oldest model.
 | |
|     population.popleft()
 | |
|   return history, total_time_cost
 | |
| 
 | |
| 
 | |
| def main(xargs, nas_bench):
 | |
|   assert torch.cuda.is_available(), 'CUDA is not available.'
 | |
|   torch.backends.cudnn.enabled   = True
 | |
|   torch.backends.cudnn.benchmark = False
 | |
|   torch.backends.cudnn.deterministic = True
 | |
|   torch.set_num_threads( xargs.workers )
 | |
|   prepare_seed(xargs.rand_seed)
 | |
|   logger = prepare_logger(args)
 | |
| 
 | |
|   if xargs.dataset == 'cifar10':
 | |
|     dataname = 'cifar10-valid'
 | |
|   else:
 | |
|     dataname = xargs.dataset
 | |
|   if xargs.data_path is not None:
 | |
|     train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
 | |
|     split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
 | |
|     cifar_split = load_config(split_Fpath, None, None)
 | |
|     train_split, valid_split = cifar_split.train, cifar_split.valid
 | |
|     logger.log('Load split file from {:}'.format(split_Fpath))
 | |
|     config_path = 'configs/nas-benchmark/algos/R-EA.config'
 | |
|     config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger)
 | |
|     # To split data
 | |
|     train_data_v2 = deepcopy(train_data)
 | |
|     train_data_v2.transform = valid_data.transform
 | |
|     valid_data    = train_data_v2
 | |
|     search_data   = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
 | |
|     # data loader
 | |
|     train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True)
 | |
|     valid_loader  = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
 | |
|     logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
 | |
|     logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
 | |
|     extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader}
 | |
|   else:
 | |
|     config_path = 'configs/nas-benchmark/algos/R-EA.config'
 | |
|     config = load_config(config_path, None, logger)
 | |
|     logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
 | |
|     extra_info = {'config': config, 'train_loader': None, 'valid_loader': None}
 | |
| 
 | |
|   search_space = get_search_spaces('cell', xargs.search_space_name)
 | |
|   random_arch = random_architecture_func(xargs.max_nodes, search_space)
 | |
|   mutate_arch = mutate_arch_func(search_space)
 | |
|   #x =random_arch() ; y = mutate_arch(x)
 | |
|   x_start_time = time.time()
 | |
|   logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench))
 | |
|   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget))
 | |
|   history, total_cost = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, nas_bench if args.ea_fast_by_api else None, extra_info, dataname)
 | |
|   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_cost, time.time()-x_start_time))
 | |
|   best_arch = max(history, key=lambda i: i.accuracy)
 | |
|   best_arch = best_arch.arch
 | |
|   logger.log('{:} best arch is {:}'.format(time_string(), best_arch))
 | |
|   
 | |
|   info = nas_bench.query_by_arch( best_arch )
 | |
|   if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch))
 | |
|   else           : logger.log('{:}'.format(info))
 | |
|   logger.log('-'*100)
 | |
|   logger.close()
 | |
|   return logger.log_dir, nas_bench.query_index_by_arch( best_arch )
 | |
|   
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|   parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
 | |
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset')
 | |
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
 | |
|   # channels and number-of-cells
 | |
|   parser.add_argument('--search_space_name',  type=str,   help='The search space name.')
 | |
|   parser.add_argument('--max_nodes',          type=int,   help='The maximum number of nodes.')
 | |
|   parser.add_argument('--channel',            type=int,   help='The number of channels.')
 | |
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.')
 | |
|   parser.add_argument('--ea_cycles',          type=int,   help='The number of cycles in EA.')
 | |
|   parser.add_argument('--ea_population',      type=int,   help='The population size in EA.')
 | |
|   parser.add_argument('--ea_sample_size',     type=int,   help='The sample size in EA.')
 | |
|   parser.add_argument('--ea_fast_by_api',     type=int,   help='Use our API to speed up the experiments or not.')
 | |
|   parser.add_argument('--time_budget',        type=int,   help='The total time cost budge for searching (in seconds).')
 | |
|   # log
 | |
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)')
 | |
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.')
 | |
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).')
 | |
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)')
 | |
|   parser.add_argument('--rand_seed',          type=int,   default=-1,   help='manual seed')
 | |
|   args = parser.parse_args()
 | |
|   #if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
 | |
|   args.ea_fast_by_api = args.ea_fast_by_api > 0
 | |
| 
 | |
|   if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
 | |
|     nas_bench = None
 | |
|   else:
 | |
|     print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset))
 | |
|     nas_bench = API(args.arch_nas_dataset)
 | |
|   if args.rand_seed < 0:
 | |
|     save_dir, all_indexes, num = None, [], 500
 | |
|     for i in range(num):
 | |
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num))
 | |
|       args.rand_seed = random.randint(1, 100000)
 | |
|       save_dir, index = main(args, nas_bench)
 | |
|       all_indexes.append( index )
 | |
|     torch.save(all_indexes, save_dir / 'results.pth')
 | |
|   else:
 | |
|     main(args, nas_bench)
 |