78 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			78 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| import torch.nn as nn
 | |
| from .construct_utils import drop_path
 | |
| from .base_cells import InferCell
 | |
| from .head_utils import ImageNetHEAD, AuxiliaryHeadImageNet
 | |
| 
 | |
| 
 | |
| class NetworkImageNet(nn.Module):
 | |
| 
 | |
|   def __init__(self, C, N, auxiliary, genotype, num_classes):
 | |
|     super(NetworkImageNet, self).__init__()
 | |
|     self._C          = C
 | |
|     self._layerN     = N
 | |
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4] * N
 | |
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
 | |
|     self.stem0 = nn.Sequential(
 | |
|       nn.Conv2d(3, C // 2, kernel_size=3, stride=2, padding=1, bias=False),
 | |
|       nn.BatchNorm2d(C // 2),
 | |
|       nn.ReLU(inplace=True),
 | |
|       nn.Conv2d(C // 2, C, 3, stride=2, padding=1, bias=False),
 | |
|       nn.BatchNorm2d(C),
 | |
|     )
 | |
| 
 | |
|     self.stem1 = nn.Sequential(
 | |
|       nn.ReLU(inplace=True),
 | |
|       nn.Conv2d(C, C, 3, stride=2, padding=1, bias=False),
 | |
|       nn.BatchNorm2d(C),
 | |
|     )
 | |
| 
 | |
|     C_prev_prev, C_prev, C_curr, reduction_prev = C, C, C, True
 | |
| 
 | |
|     self.cells = nn.ModuleList()
 | |
|     self.auxiliary_index = None
 | |
|     for i, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
 | |
|       cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
 | |
|       reduction_prev = reduction
 | |
|       self.cells += [cell]
 | |
|       C_prev_prev, C_prev = C_prev, cell._multiplier * C_curr
 | |
|       if reduction and C_curr == C*4:
 | |
|         C_to_auxiliary = C_prev
 | |
|         self.auxiliary_index = i
 | |
|   
 | |
|     self._NNN = len(self.cells)
 | |
|     if auxiliary:
 | |
|       self.auxiliary_head = AuxiliaryHeadImageNet(C_to_auxiliary, num_classes)
 | |
|     else:
 | |
|       self.auxiliary_head = None
 | |
|     self.global_pooling = nn.AvgPool2d(7)
 | |
|     self.classifier     = nn.Linear(C_prev, num_classes)
 | |
|     self.drop_path_prob = -1
 | |
| 
 | |
|   def update_drop_path(self, drop_path_prob):
 | |
|     self.drop_path_prob = drop_path_prob
 | |
| 
 | |
|   def extra_repr(self):
 | |
|     return ('{name}(C={_C}, N=[{_layerN}, {_NNN}], aux-index={auxiliary_index}, drop-path={drop_path_prob})'.format(name=self.__class__.__name__, **self.__dict__))
 | |
| 
 | |
|   def get_message(self):
 | |
|     return self.extra_repr()
 | |
| 
 | |
|   def auxiliary_param(self):
 | |
|     if self.auxiliary_head is None: return []
 | |
|     else: return list( self.auxiliary_head.parameters() )
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     s0 = self.stem0(inputs)
 | |
|     s1 = self.stem1(s0)
 | |
|     logits_aux = None
 | |
|     for i, cell in enumerate(self.cells):
 | |
|       s0, s1 = s1, cell(s0, s1, self.drop_path_prob)
 | |
|       if i == self.auxiliary_index and self.auxiliary_head and self.training:
 | |
|         logits_aux = self.auxiliary_head(s1)
 | |
|     out = self.global_pooling(s1)
 | |
|     logits = self.classifier(out.view(out.size(0), -1))
 | |
| 
 | |
|     if logits_aux is None: return out, logits
 | |
|     else                 : return out, [logits, logits_aux]
 |