66 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			66 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| import torch.nn as nn
 | |
| 
 | |
| 
 | |
| class ImageNetHEAD(nn.Sequential):
 | |
|   def __init__(self, C, stride=2):
 | |
|     super(ImageNetHEAD, self).__init__()
 | |
|     self.add_module('conv1', nn.Conv2d(3, C // 2, kernel_size=3, stride=2, padding=1, bias=False))
 | |
|     self.add_module('bn1'  , nn.BatchNorm2d(C // 2))
 | |
|     self.add_module('relu1', nn.ReLU(inplace=True))
 | |
|     self.add_module('conv2', nn.Conv2d(C // 2, C, kernel_size=3, stride=stride, padding=1, bias=False))
 | |
|     self.add_module('bn2'  , nn.BatchNorm2d(C))
 | |
| 
 | |
| 
 | |
| class CifarHEAD(nn.Sequential):
 | |
|   def __init__(self, C):
 | |
|     super(CifarHEAD, self).__init__()
 | |
|     self.add_module('conv', nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False))
 | |
|     self.add_module('bn', nn.BatchNorm2d(C))
 | |
| 
 | |
| 
 | |
| class AuxiliaryHeadCIFAR(nn.Module):
 | |
| 
 | |
|   def __init__(self, C, num_classes):
 | |
|     """assuming input size 8x8"""
 | |
|     super(AuxiliaryHeadCIFAR, self).__init__()
 | |
|     self.features = nn.Sequential(
 | |
|       nn.ReLU(inplace=True),
 | |
|       nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
 | |
|       nn.Conv2d(C, 128, 1, bias=False),
 | |
|       nn.BatchNorm2d(128),
 | |
|       nn.ReLU(inplace=True),
 | |
|       nn.Conv2d(128, 768, 2, bias=False),
 | |
|       nn.BatchNorm2d(768),
 | |
|       nn.ReLU(inplace=True)
 | |
|     )
 | |
|     self.classifier = nn.Linear(768, num_classes)
 | |
| 
 | |
|   def forward(self, x):
 | |
|     x = self.features(x)
 | |
|     x = self.classifier(x.view(x.size(0),-1))
 | |
|     return x
 | |
| 
 | |
| 
 | |
| class AuxiliaryHeadImageNet(nn.Module):
 | |
| 
 | |
|   def __init__(self, C, num_classes):
 | |
|     """assuming input size 14x14"""
 | |
|     super(AuxiliaryHeadImageNet, self).__init__()
 | |
|     self.features = nn.Sequential(
 | |
|       nn.ReLU(inplace=True),
 | |
|       nn.AvgPool2d(5, stride=2, padding=0, count_include_pad=False),
 | |
|       nn.Conv2d(C, 128, 1, bias=False),
 | |
|       nn.BatchNorm2d(128),
 | |
|       nn.ReLU(inplace=True),
 | |
|       nn.Conv2d(128, 768, 2, bias=False),
 | |
|       nn.BatchNorm2d(768),
 | |
|       nn.ReLU(inplace=True)
 | |
|     )
 | |
|     self.classifier = nn.Linear(768, num_classes)
 | |
| 
 | |
|   def forward(self, x):
 | |
|     x = self.features(x)
 | |
|     x = self.classifier(x.view(x.size(0),-1))
 | |
|     return x
 |