317 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| ##################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
 | |
| ##################################################
 | |
| import math, torch
 | |
| import torch.nn as nn
 | |
| from ..initialization import initialize_resnet
 | |
| from ..SharedUtils    import additive_func
 | |
| from .SoftSelect      import select2withP, ChannelWiseInter
 | |
| from .SoftSelect      import linear_forward
 | |
| from .SoftSelect      import get_width_choices as get_choices
 | |
| 
 | |
| 
 | |
| def conv_forward(inputs, conv, choices):
 | |
|   iC = conv.in_channels
 | |
|   fill_size = list(inputs.size())
 | |
|   fill_size[1] = iC - fill_size[1]
 | |
|   filled  = torch.zeros(fill_size, device=inputs.device)
 | |
|   xinputs = torch.cat((inputs, filled), dim=1)
 | |
|   outputs = conv(xinputs)
 | |
|   selecteds = [outputs[:,:oC] for oC in choices]
 | |
|   return selecteds
 | |
| 
 | |
| 
 | |
| class ConvBNReLU(nn.Module):
 | |
|   num_conv  = 1
 | |
|   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu):
 | |
|     super(ConvBNReLU, self).__init__()
 | |
|     self.InShape  = None
 | |
|     self.OutShape = None
 | |
|     self.choices  = get_choices(nOut)
 | |
|     self.register_buffer('choices_tensor', torch.Tensor( self.choices ))
 | |
| 
 | |
|     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
 | |
|     else       : self.avg = None
 | |
|     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias)
 | |
|     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut)
 | |
|     #else       : self.bn  = None
 | |
|     self.has_bn = has_bn
 | |
|     self.BNs  = nn.ModuleList()
 | |
|     for i, _out in enumerate(self.choices):
 | |
|       self.BNs.append(nn.BatchNorm2d(_out))
 | |
|     if has_relu: self.relu = nn.ReLU(inplace=True)
 | |
|     else       : self.relu = None
 | |
|     self.in_dim   = nIn
 | |
|     self.out_dim  = nOut
 | |
|     self.search_mode = 'basic'
 | |
| 
 | |
|   def get_flops(self, channels, check_range=True, divide=1):
 | |
|     iC, oC = channels
 | |
|     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels)
 | |
|     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape)
 | |
|     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape)
 | |
|     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups
 | |
|     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups)
 | |
|     all_positions = self.OutShape[0] * self.OutShape[1]
 | |
|     flops = (conv_per_position_flops * all_positions / divide) * iC * oC
 | |
|     if self.conv.bias is not None: flops += all_positions / divide
 | |
|     return flops
 | |
| 
 | |
|   def get_range(self):
 | |
|     return [self.choices]
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     if self.search_mode == 'basic':
 | |
|       return self.basic_forward(inputs)
 | |
|     elif self.search_mode == 'search':
 | |
|       return self.search_forward(inputs)
 | |
|     else:
 | |
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
 | |
| 
 | |
|   def search_forward(self, tuple_inputs):
 | |
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
 | |
|     inputs, expected_inC, probability, index, prob = tuple_inputs
 | |
|     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob)
 | |
|     probability = torch.squeeze(probability)
 | |
|     assert len(index) == 2, 'invalid length : {:}'.format(index)
 | |
|     # compute expected flop
 | |
|     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability)
 | |
|     expected_outC = (self.choices_tensor * probability).sum()
 | |
|     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6)
 | |
|     if self.avg : out = self.avg( inputs )
 | |
|     else        : out = inputs
 | |
|     # convolutional layer
 | |
|     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index])
 | |
|     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)]
 | |
|     # merge
 | |
|     out_channel = max([x.size(1) for x in out_bns])
 | |
|     outA = ChannelWiseInter(out_bns[0], out_channel)
 | |
|     outB = ChannelWiseInter(out_bns[1], out_channel)
 | |
|     out  = outA * prob[0] + outB * prob[1]
 | |
|     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1])
 | |
| 
 | |
|     if self.relu: out = self.relu( out )
 | |
|     else        : out = out
 | |
|     return out, expected_outC, expected_flop
 | |
| 
 | |
|   def basic_forward(self, inputs):
 | |
|     if self.avg : out = self.avg( inputs )
 | |
|     else        : out = inputs
 | |
|     conv = self.conv( out )
 | |
|     if self.has_bn:out= self.BNs[-1]( conv )
 | |
|     else        : out = conv
 | |
|     if self.relu: out = self.relu( out )
 | |
|     else        : out = out
 | |
|     if self.InShape is None:
 | |
|       self.InShape  = (inputs.size(-2), inputs.size(-1))
 | |
|       self.OutShape = (out.size(-2)   , out.size(-1))
 | |
|     return out
 | |
| 
 | |
| 
 | |
| class SimBlock(nn.Module):
 | |
|   expansion = 1
 | |
|   num_conv  = 1
 | |
|   def __init__(self, inplanes, planes, stride):
 | |
|     super(SimBlock, self).__init__()
 | |
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
 | |
|     self.conv = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True)
 | |
|     if stride == 2:
 | |
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False)
 | |
|     elif inplanes != planes:
 | |
|       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False)
 | |
|     else:
 | |
|       self.downsample = None
 | |
|     self.out_dim     = planes
 | |
|     self.search_mode = 'basic'
 | |
| 
 | |
|   def get_range(self):
 | |
|     return self.conv.get_range()
 | |
| 
 | |
|   def get_flops(self, channels):
 | |
|     assert len(channels) == 2, 'invalid channels : {:}'.format(channels)
 | |
|     flop_A = self.conv.get_flops([channels[0], channels[1]])
 | |
|     if hasattr(self.downsample, 'get_flops'):
 | |
|       flop_C = self.downsample.get_flops([channels[0], channels[-1]])
 | |
|     else:
 | |
|       flop_C = 0
 | |
|     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train
 | |
|       flop_C = channels[0] * channels[-1] * self.conv.OutShape[0] * self.conv.OutShape[1]
 | |
|     return flop_A + flop_C
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     if self.search_mode == 'basic'   : return self.basic_forward(inputs)
 | |
|     elif self.search_mode == 'search': return self.search_forward(inputs)
 | |
|     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
 | |
| 
 | |
|   def search_forward(self, tuple_inputs):
 | |
|     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) )
 | |
|     inputs, expected_inC, probability, indexes, probs = tuple_inputs
 | |
|     assert indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1, 'invalid size : {:}, {:}, {:}'.format(indexes.size(), probs.size(), probability.size())
 | |
|     out, expected_next_inC, expected_flop = self.conv( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) )
 | |
|     if self.downsample is not None:
 | |
|       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[-1], indexes[-1], probs[-1]) )
 | |
|     else:
 | |
|       residual, expected_flop_c = inputs, 0
 | |
|     out = additive_func(residual, out)
 | |
|     return out, expected_next_inC, sum([expected_flop, expected_flop_c])
 | |
| 
 | |
|   def basic_forward(self, inputs):
 | |
|     basicblock = self.conv(inputs)
 | |
|     if self.downsample is not None: residual = self.downsample(inputs)
 | |
|     else                          : residual = inputs
 | |
|     out = additive_func(residual, basicblock)
 | |
|     return nn.functional.relu(out, inplace=True)
 | |
| 
 | |
| 
 | |
| 
 | |
| class SearchWidthSimResNet(nn.Module):
 | |
| 
 | |
|   def __init__(self, depth, num_classes):
 | |
|     super(SearchWidthSimResNet, self).__init__()
 | |
| 
 | |
|     assert (depth - 2) % 3 == 0, 'depth should be one of 5, 8, 11, 14, ... instead of {:}'.format(depth)
 | |
|     layer_blocks = (depth - 2) // 3
 | |
|     self.message     = 'SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks)
 | |
|     self.num_classes = num_classes
 | |
|     self.channels    = [16]
 | |
|     self.layers      = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] )
 | |
|     self.InShape     = None
 | |
|     for stage in range(3):
 | |
|       for iL in range(layer_blocks):
 | |
|         iC     = self.channels[-1]
 | |
|         planes = 16 * (2**stage)
 | |
|         stride = 2 if stage > 0 and iL == 0 else 1
 | |
|         module = SimBlock(iC, planes, stride)
 | |
|         self.channels.append( module.out_dim )
 | |
|         self.layers.append  ( module )
 | |
|         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride)
 | |
|   
 | |
|     self.avgpool     = nn.AvgPool2d(8)
 | |
|     self.classifier  = nn.Linear(module.out_dim, num_classes)
 | |
|     self.InShape     = None
 | |
|     self.tau         = -1
 | |
|     self.search_mode = 'basic'
 | |
|     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth)
 | |
|     
 | |
|     # parameters for width
 | |
|     self.Ranges = []
 | |
|     self.layer2indexRange = []
 | |
|     for i, layer in enumerate(self.layers):
 | |
|       start_index = len(self.Ranges)
 | |
|       self.Ranges += layer.get_range()
 | |
|       self.layer2indexRange.append( (start_index, len(self.Ranges)) )
 | |
|     assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth)
 | |
| 
 | |
|     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))))
 | |
|     nn.init.normal_(self.width_attentions, 0, 0.01)
 | |
|     self.apply(initialize_resnet)
 | |
| 
 | |
|   def arch_parameters(self):
 | |
|     return [self.width_attentions]
 | |
| 
 | |
|   def base_parameters(self):
 | |
|     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters())
 | |
| 
 | |
|   def get_flop(self, mode, config_dict, extra_info):
 | |
|     if config_dict is not None: config_dict = config_dict.copy()
 | |
|     #weights = [F.softmax(x, dim=0) for x in self.width_attentions]
 | |
|     channels = [3]
 | |
|     for i, weight in enumerate(self.width_attentions):
 | |
|       if mode == 'genotype':
 | |
|         with torch.no_grad():
 | |
|           probe = nn.functional.softmax(weight, dim=0)
 | |
|           C = self.Ranges[i][ torch.argmax(probe).item() ]
 | |
|       elif mode == 'max':
 | |
|         C = self.Ranges[i][-1]
 | |
|       elif mode == 'fix':
 | |
|         C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
 | |
|       elif mode == 'random':
 | |
|         assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info)
 | |
|         with torch.no_grad():
 | |
|           prob = nn.functional.softmax(weight, dim=0)
 | |
|           approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] )
 | |
|           for j in range(prob.size(0)):
 | |
|             prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2)
 | |
|           C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ]
 | |
|       else:
 | |
|         raise ValueError('invalid mode : {:}'.format(mode))
 | |
|       channels.append( C )
 | |
|     flop = 0
 | |
|     for i, layer in enumerate(self.layers):
 | |
|       s, e = self.layer2indexRange[i]
 | |
|       xchl = tuple( channels[s:e+1] )
 | |
|       flop+= layer.get_flops(xchl)
 | |
|     # the last fc layer
 | |
|     flop += channels[-1] * self.classifier.out_features
 | |
|     if config_dict is None:
 | |
|       return flop / 1e6
 | |
|     else:
 | |
|       config_dict['xchannels']  = channels
 | |
|       config_dict['super_type'] = 'infer-width'
 | |
|       config_dict['estimated_FLOP'] = flop / 1e6
 | |
|       return flop / 1e6, config_dict
 | |
| 
 | |
|   def get_arch_info(self):
 | |
|     string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions))
 | |
|     discrepancy = []
 | |
|     with torch.no_grad():
 | |
|       for i, att in enumerate(self.width_attentions):
 | |
|         prob = nn.functional.softmax(att, dim=0)
 | |
|         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist()
 | |
|         prob = ['{:.3f}'.format(x) for x in prob]
 | |
|         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob))
 | |
|         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()]
 | |
|         xstring += '  ||  {:52s}'.format(' '.join(logt))
 | |
|         prob = sorted( [float(x) for x in prob] )
 | |
|         disc = prob[-1] - prob[-2]
 | |
|         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob))
 | |
|         discrepancy.append( disc )
 | |
|         string += '\n{:}'.format(xstring)
 | |
|     return string, discrepancy
 | |
| 
 | |
|   def set_tau(self, tau_max, tau_min, epoch_ratio):
 | |
|     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio)
 | |
|     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2
 | |
|     self.tau = tau
 | |
| 
 | |
|   def get_message(self):
 | |
|     return self.message
 | |
| 
 | |
|   def forward(self, inputs):
 | |
|     if self.search_mode == 'basic':
 | |
|       return self.basic_forward(inputs)
 | |
|     elif self.search_mode == 'search':
 | |
|       return self.search_forward(inputs)
 | |
|     else:
 | |
|       raise ValueError('invalid search_mode = {:}'.format(self.search_mode))
 | |
| 
 | |
|   def search_forward(self, inputs):
 | |
|     flop_probs = nn.functional.softmax(self.width_attentions, dim=1)
 | |
|     selected_widths, selected_probs = select2withP(self.width_attentions, self.tau)
 | |
|     with torch.no_grad():
 | |
|       selected_widths = selected_widths.cpu()
 | |
| 
 | |
|     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, []
 | |
|     for i, layer in enumerate(self.layers):
 | |
|       selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv]
 | |
|       selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv]
 | |
|       layer_prob       = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv]
 | |
|       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) )
 | |
|       last_channel_idx += layer.num_conv
 | |
|       flops.append( expected_flop )
 | |
|     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) )
 | |
|     features = self.avgpool(x)
 | |
|     features = features.view(features.size(0), -1)
 | |
|     logits   = linear_forward(features, self.classifier)
 | |
|     return logits, torch.stack( [sum(flops)] )
 | |
| 
 | |
|   def basic_forward(self, inputs):
 | |
|     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1))
 | |
|     x = inputs
 | |
|     for i, layer in enumerate(self.layers):
 | |
|       x = layer( x )
 | |
|     features = self.avgpool(x)
 | |
|     features = features.view(features.size(0), -1)
 | |
|     logits   = self.classifier(features)
 | |
|     return features, logits
 |