89 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #####################################################
 | |
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
 | |
| #####################################################
 | |
| import math
 | |
| import abc
 | |
| import numpy as np
 | |
| from typing import Optional
 | |
| import torch
 | |
| import torch.utils.data as data
 | |
| 
 | |
| 
 | |
| class UnifiedSplit:
 | |
|     """A class to unify the split strategy."""
 | |
| 
 | |
|     def __init__(self, total_num, mode):
 | |
|         # Training Set 60%
 | |
|         num_of_train = int(total_num * 0.6)
 | |
|         # Validation Set 20%
 | |
|         num_of_valid = int(total_num * 0.2)
 | |
|         # Test Set 20%
 | |
|         num_of_set = total_num - num_of_train - num_of_valid
 | |
|         all_indexes = list(range(total_num))
 | |
|         if mode is None:
 | |
|             self._indexes = all_indexes
 | |
|         elif mode.lower() in ("train", "training"):
 | |
|             self._indexes = all_indexes[:num_of_train]
 | |
|         elif mode.lower() in ("valid", "validation"):
 | |
|             self._indexes = all_indexes[num_of_train : num_of_train + num_of_valid]
 | |
|         elif mode.lower() in ("test", "testing"):
 | |
|             self._indexes = all_indexes[num_of_train + num_of_valid :]
 | |
|         else:
 | |
|             raise ValueError("Unkonwn mode of {:}".format(mode))
 | |
|         self._mode = mode
 | |
| 
 | |
|     @property
 | |
|     def mode(self):
 | |
|         return self._mode
 | |
| 
 | |
| 
 | |
| class TimeStamp(UnifiedSplit, data.Dataset):
 | |
|     """The timestamp dataset."""
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         min_timestamp: float = 0.0,
 | |
|         max_timestamp: float = 1.0,
 | |
|         num: int = 100,
 | |
|         mode: Optional[str] = None,
 | |
|     ):
 | |
|         self._min_timestamp = min_timestamp
 | |
|         self._max_timestamp = max_timestamp
 | |
|         self._interval = (max_timestamp - min_timestamp) / (float(num) - 1)
 | |
|         self._total_num = num
 | |
|         UnifiedSplit.__init__(self, self._total_num, mode)
 | |
| 
 | |
|     @property
 | |
|     def min_timestamp(self):
 | |
|         return self._min_timestamp
 | |
| 
 | |
|     @property
 | |
|     def max_timestamp(self):
 | |
|         return self._max_timestamp
 | |
| 
 | |
|     def __iter__(self):
 | |
|         self._iter_num = 0
 | |
|         return self
 | |
| 
 | |
|     def __next__(self):
 | |
|         if self._iter_num >= len(self):
 | |
|             raise StopIteration
 | |
|         self._iter_num += 1
 | |
|         return self.__getitem__(self._iter_num - 1)
 | |
| 
 | |
|     def __getitem__(self, index):
 | |
|         assert 0 <= index < len(self), "{:} is not in [0, {:})".format(index, len(self))
 | |
|         index = self._indexes[index]
 | |
|         timestamp = self._min_timestamp + self._interval * index
 | |
|         return index, timestamp
 | |
| 
 | |
|     def __len__(self):
 | |
|         return len(self._indexes)
 | |
| 
 | |
|     def __repr__(self):
 | |
|         return "{name}({cur_num:}/{total} elements)".format(
 | |
|             name=self.__class__.__name__,
 | |
|             cur_num=len(self),
 | |
|             total=self._total_num,
 | |
|         )
 |